基于扩散表示的分数阶系统最优控制

Ghania Idiri, S. Djennoune, M. Bettayeb
{"title":"基于扩散表示的分数阶系统最优控制","authors":"Ghania Idiri, S. Djennoune, M. Bettayeb","doi":"10.1109/ICOSC.2013.6750869","DOIUrl":null,"url":null,"abstract":"This paper deals with optimal control of fractional order systems using control vector parameterization. The main idea consists in transforming the optimal control problem to a nonlinear optimization problem where the optimization variables are the parameters of the optimal control law to be determined. Thus, by parameterizing the control variable by unknown parameters and by substituting its expression in the diffusive representation of the fractional system, a set of ordinary differential equations is obtained. These equations are solved by the variational iteration method to get an approximate analytical expression of the optimal trajectories as a function of time and the unknown parameters of the optimal control law. Then, by substituting the expression of the control law and the optimal trajectories into the performance index, a non linear optimization problem is obtained where the control law parameters are the optimization variables. The solution of the obtained optimization problem using a global optimization method gives the optimal values of the control parameters, that is, the optimal control law. The proposed approach is illustrated by an application example.","PeriodicalId":199135,"journal":{"name":"3rd International Conference on Systems and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal control of fractional systems based on the diffusive representation\",\"authors\":\"Ghania Idiri, S. Djennoune, M. Bettayeb\",\"doi\":\"10.1109/ICOSC.2013.6750869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with optimal control of fractional order systems using control vector parameterization. The main idea consists in transforming the optimal control problem to a nonlinear optimization problem where the optimization variables are the parameters of the optimal control law to be determined. Thus, by parameterizing the control variable by unknown parameters and by substituting its expression in the diffusive representation of the fractional system, a set of ordinary differential equations is obtained. These equations are solved by the variational iteration method to get an approximate analytical expression of the optimal trajectories as a function of time and the unknown parameters of the optimal control law. Then, by substituting the expression of the control law and the optimal trajectories into the performance index, a non linear optimization problem is obtained where the control law parameters are the optimization variables. The solution of the obtained optimization problem using a global optimization method gives the optimal values of the control parameters, that is, the optimal control law. The proposed approach is illustrated by an application example.\",\"PeriodicalId\":199135,\"journal\":{\"name\":\"3rd International Conference on Systems and Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3rd International Conference on Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSC.2013.6750869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd International Conference on Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2013.6750869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文用控制向量参数化方法研究分数阶系统的最优控制。其主要思想是将最优控制问题转化为非线性优化问题,其中最优变量是待确定的最优控制律的参数。因此,通过用未知参数参数化控制变量,并将其表达式代入分数阶系统的扩散表示中,得到一组常微分方程。用变分迭代法求解这些方程,得到最优轨迹随时间和最优控制律未知参数的近似解析表达式。然后,将控制律表达式和最优轨迹代入性能指标,得到以控制律参数为优化变量的非线性优化问题。利用全局寻优方法对得到的优化问题进行求解,得到控制参数的最优值,即最优控制律。通过一个应用实例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal control of fractional systems based on the diffusive representation
This paper deals with optimal control of fractional order systems using control vector parameterization. The main idea consists in transforming the optimal control problem to a nonlinear optimization problem where the optimization variables are the parameters of the optimal control law to be determined. Thus, by parameterizing the control variable by unknown parameters and by substituting its expression in the diffusive representation of the fractional system, a set of ordinary differential equations is obtained. These equations are solved by the variational iteration method to get an approximate analytical expression of the optimal trajectories as a function of time and the unknown parameters of the optimal control law. Then, by substituting the expression of the control law and the optimal trajectories into the performance index, a non linear optimization problem is obtained where the control law parameters are the optimization variables. The solution of the obtained optimization problem using a global optimization method gives the optimal values of the control parameters, that is, the optimal control law. The proposed approach is illustrated by an application example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信