{"title":"带宽带分压器的3d打印频率扫描开槽波导阵列","authors":"Kunchen Zhao, Grant Senger, N. Ghalichechian","doi":"10.23919/USNC-URSI-NRSM.2019.8712999","DOIUrl":null,"url":null,"abstract":"In this paper we present the design, simulation, and fabrication results of a full 3D-printed frequency scanning slotted waveguide array (SWA) with an accommodating 3D printed power divider and a matched termination. An 18 × 4 non-resonant SWA operating at 12 - 18 GHz is designed with symmetric beam scanning range. A 1:4 waveguide power divider is proposed to feed the SWA. Inductive walls are added to the power divider to improve the impedance matching. A conical load is designed based on the lossy 3D printing material to terminate the SWA. Fabrication is done by fused deposition modeling (FDM) 3D printing technique. Simulation performed with CST shows a symmetric beam scan range from -15.2° to +15.4°. The broadside gain is 15 dBi at 14 GHz. The lowest and the highest gains are 9.3 dBi at 12 GHz and 23 dBi at 16 GHz, respectively. Although there were documented works on non-scanning 3D printed SWAs, to the best of our knowledge, this is the first work on 3D printed two-dimensional scanning SWAs.","PeriodicalId":142320,"journal":{"name":"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"3D-Printed Frequency Scanning Slotted Waveguide Array with Wide Band Power Divider\",\"authors\":\"Kunchen Zhao, Grant Senger, N. Ghalichechian\",\"doi\":\"10.23919/USNC-URSI-NRSM.2019.8712999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present the design, simulation, and fabrication results of a full 3D-printed frequency scanning slotted waveguide array (SWA) with an accommodating 3D printed power divider and a matched termination. An 18 × 4 non-resonant SWA operating at 12 - 18 GHz is designed with symmetric beam scanning range. A 1:4 waveguide power divider is proposed to feed the SWA. Inductive walls are added to the power divider to improve the impedance matching. A conical load is designed based on the lossy 3D printing material to terminate the SWA. Fabrication is done by fused deposition modeling (FDM) 3D printing technique. Simulation performed with CST shows a symmetric beam scan range from -15.2° to +15.4°. The broadside gain is 15 dBi at 14 GHz. The lowest and the highest gains are 9.3 dBi at 12 GHz and 23 dBi at 16 GHz, respectively. Although there were documented works on non-scanning 3D printed SWAs, to the best of our knowledge, this is the first work on 3D printed two-dimensional scanning SWAs.\",\"PeriodicalId\":142320,\"journal\":{\"name\":\"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/USNC-URSI-NRSM.2019.8712999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC-URSI-NRSM.2019.8712999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D-Printed Frequency Scanning Slotted Waveguide Array with Wide Band Power Divider
In this paper we present the design, simulation, and fabrication results of a full 3D-printed frequency scanning slotted waveguide array (SWA) with an accommodating 3D printed power divider and a matched termination. An 18 × 4 non-resonant SWA operating at 12 - 18 GHz is designed with symmetric beam scanning range. A 1:4 waveguide power divider is proposed to feed the SWA. Inductive walls are added to the power divider to improve the impedance matching. A conical load is designed based on the lossy 3D printing material to terminate the SWA. Fabrication is done by fused deposition modeling (FDM) 3D printing technique. Simulation performed with CST shows a symmetric beam scan range from -15.2° to +15.4°. The broadside gain is 15 dBi at 14 GHz. The lowest and the highest gains are 9.3 dBi at 12 GHz and 23 dBi at 16 GHz, respectively. Although there were documented works on non-scanning 3D printed SWAs, to the best of our knowledge, this is the first work on 3D printed two-dimensional scanning SWAs.