应用于混合动力汽车的混合直流电源的无源控制和滑模控制

P. Dai, S. Cauet, P. Coirault
{"title":"应用于混合动力汽车的混合直流电源的无源控制和滑模控制","authors":"P. Dai, S. Cauet, P. Coirault","doi":"10.1109/ICOSC.2013.6750934","DOIUrl":null,"url":null,"abstract":"A Hybrid Electric Vehicle (HEV) is mainly composed of an Internal Combustion Engine (ICE) and an electrical machine. This electrical machine is connected to the DC power sources through an AC/DC inverter and DC/DC converters. Other than being used as a secondary source of the propulsion, this electrical machine together with the other electrical parts, may work as an “active flywheel” to compensate the torque ripples generated by ICE. These ripples are then “transferred” to the DC bus. A hybrid DC power source with battery as the main power and supercapacitor as the auxiliary power is explored in this paper. The DC part is modeled as a hybrid DC power source system with sinusoidal external current. Being different from other works where supercapacitors work as a rapid supplementary power during transient energy delivery or transient energy recovery, the supercapacitor studied here is used to absorb the consistent sinusoidal harmonic in the DC bus. Nonlinear control strategies are employed to achieve the objectives: Passivity-Based Control (PBC) is used to control the battery side bi-direction DC/DC converter to maintain the main power in the DC bus, and Sliding Mode Control (SMC) is applied to control the supercapacitor side bi-direction DC/DC converter to absorb the harmonic.","PeriodicalId":199135,"journal":{"name":"3rd International Conference on Systems and Control","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Passivity-based control and Sliding Mode Control of hybrid DC power source applied to Hybrid Electric Vehicles\",\"authors\":\"P. Dai, S. Cauet, P. Coirault\",\"doi\":\"10.1109/ICOSC.2013.6750934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Hybrid Electric Vehicle (HEV) is mainly composed of an Internal Combustion Engine (ICE) and an electrical machine. This electrical machine is connected to the DC power sources through an AC/DC inverter and DC/DC converters. Other than being used as a secondary source of the propulsion, this electrical machine together with the other electrical parts, may work as an “active flywheel” to compensate the torque ripples generated by ICE. These ripples are then “transferred” to the DC bus. A hybrid DC power source with battery as the main power and supercapacitor as the auxiliary power is explored in this paper. The DC part is modeled as a hybrid DC power source system with sinusoidal external current. Being different from other works where supercapacitors work as a rapid supplementary power during transient energy delivery or transient energy recovery, the supercapacitor studied here is used to absorb the consistent sinusoidal harmonic in the DC bus. Nonlinear control strategies are employed to achieve the objectives: Passivity-Based Control (PBC) is used to control the battery side bi-direction DC/DC converter to maintain the main power in the DC bus, and Sliding Mode Control (SMC) is applied to control the supercapacitor side bi-direction DC/DC converter to absorb the harmonic.\",\"PeriodicalId\":199135,\"journal\":{\"name\":\"3rd International Conference on Systems and Control\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3rd International Conference on Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSC.2013.6750934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd International Conference on Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2013.6750934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

混合动力汽车(HEV)主要由内燃机(ICE)和电机组成。该电机通过AC/DC逆变器和DC/DC转换器与直流电源相连。除了作为推进的二次源外,该电机与其他电气部件一起可以作为“主动飞轮”来补偿ICE产生的转矩波动。然后将这些波纹“传输”到直流母线。本文研究了一种以电池为主、超级电容器为辅的混合直流电源。将直流部分建模为具有正弦外部电流的混合直流电源系统。与其他工作中超级电容器作为瞬态能量输送或瞬态能量恢复的快速补充电源不同,本文研究的超级电容器用于吸收直流母线中的一致正弦谐波。采用非线性控制策略:采用无源控制(PBC)控制电池侧双向DC/DC变换器保持直流母线主功率,采用滑模控制(SMC)控制超级电容器侧双向DC/DC变换器吸收谐波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Passivity-based control and Sliding Mode Control of hybrid DC power source applied to Hybrid Electric Vehicles
A Hybrid Electric Vehicle (HEV) is mainly composed of an Internal Combustion Engine (ICE) and an electrical machine. This electrical machine is connected to the DC power sources through an AC/DC inverter and DC/DC converters. Other than being used as a secondary source of the propulsion, this electrical machine together with the other electrical parts, may work as an “active flywheel” to compensate the torque ripples generated by ICE. These ripples are then “transferred” to the DC bus. A hybrid DC power source with battery as the main power and supercapacitor as the auxiliary power is explored in this paper. The DC part is modeled as a hybrid DC power source system with sinusoidal external current. Being different from other works where supercapacitors work as a rapid supplementary power during transient energy delivery or transient energy recovery, the supercapacitor studied here is used to absorb the consistent sinusoidal harmonic in the DC bus. Nonlinear control strategies are employed to achieve the objectives: Passivity-Based Control (PBC) is used to control the battery side bi-direction DC/DC converter to maintain the main power in the DC bus, and Sliding Mode Control (SMC) is applied to control the supercapacitor side bi-direction DC/DC converter to absorb the harmonic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信