布尔矩阵分解问题:理论、变化及其在数据工程中的应用

Jaideep Vaidya
{"title":"布尔矩阵分解问题:理论、变化及其在数据工程中的应用","authors":"Jaideep Vaidya","doi":"10.1109/ICDE.2012.144","DOIUrl":null,"url":null,"abstract":"With the ubiquitous nature and sheer scale of data collection, the problem of data summarization is most critical for effective data management. Classical matrix decomposition techniques have often been used for this purpose, and have been the subject of much study. In recent years, several other forms of decomposition, including Boolean Matrix Decomposition have become of significant practical interest. Since much of the data collected is categorical in nature, it can be viewed in terms of a Boolean matrix. Boolean matrix decomposition (BMD), wherein a boolean matrix is expressed as a product of two Boolean matrices, can be used to provide concise and interpretable representations of Boolean data sets. The decomposed matrices give the set of meaningful concepts and their combination which can be used to reconstruct the original data. Such decompositions are useful in a number of application domains including role engineering, text mining as well as knowledge discovery from databases. In this seminar, we look at the theory underlying the BMD problem, study some of its variants and solutions, and examine different practical applications.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Boolean Matrix Decomposition Problem: Theory, Variations and Applications to Data Engineering\",\"authors\":\"Jaideep Vaidya\",\"doi\":\"10.1109/ICDE.2012.144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the ubiquitous nature and sheer scale of data collection, the problem of data summarization is most critical for effective data management. Classical matrix decomposition techniques have often been used for this purpose, and have been the subject of much study. In recent years, several other forms of decomposition, including Boolean Matrix Decomposition have become of significant practical interest. Since much of the data collected is categorical in nature, it can be viewed in terms of a Boolean matrix. Boolean matrix decomposition (BMD), wherein a boolean matrix is expressed as a product of two Boolean matrices, can be used to provide concise and interpretable representations of Boolean data sets. The decomposed matrices give the set of meaningful concepts and their combination which can be used to reconstruct the original data. Such decompositions are useful in a number of application domains including role engineering, text mining as well as knowledge discovery from databases. In this seminar, we look at the theory underlying the BMD problem, study some of its variants and solutions, and examine different practical applications.\",\"PeriodicalId\":321608,\"journal\":{\"name\":\"2012 IEEE 28th International Conference on Data Engineering\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 28th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2012.144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

由于数据收集的普遍性和庞大规模,数据汇总问题对于有效的数据管理至关重要。经典的矩阵分解技术经常用于此目的,并已成为许多研究的主题。近年来,其他几种形式的分解,包括布尔矩阵分解,已经成为重要的实际兴趣。由于收集的大部分数据本质上是分类的,因此可以根据布尔矩阵来查看。布尔矩阵分解(BMD),其中布尔矩阵表示为两个布尔矩阵的乘积,可用于提供布尔数据集的简明和可解释的表示。分解后的矩阵给出了一组有意义的概念及其组合,可以用来重构原始数据。这种分解在许多应用领域都很有用,包括角色工程、文本挖掘以及从数据库中发现知识。在本次研讨会中,我们将探讨BMD问题的理论基础,研究其一些变体和解决方案,并研究不同的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boolean Matrix Decomposition Problem: Theory, Variations and Applications to Data Engineering
With the ubiquitous nature and sheer scale of data collection, the problem of data summarization is most critical for effective data management. Classical matrix decomposition techniques have often been used for this purpose, and have been the subject of much study. In recent years, several other forms of decomposition, including Boolean Matrix Decomposition have become of significant practical interest. Since much of the data collected is categorical in nature, it can be viewed in terms of a Boolean matrix. Boolean matrix decomposition (BMD), wherein a boolean matrix is expressed as a product of two Boolean matrices, can be used to provide concise and interpretable representations of Boolean data sets. The decomposed matrices give the set of meaningful concepts and their combination which can be used to reconstruct the original data. Such decompositions are useful in a number of application domains including role engineering, text mining as well as knowledge discovery from databases. In this seminar, we look at the theory underlying the BMD problem, study some of its variants and solutions, and examine different practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信