回顾:口罩R-CNN模型

Esraa Hassan, Nora El-Rashidy, fatma M. Talaa
{"title":"回顾:口罩R-CNN模型","authors":"Esraa Hassan, Nora El-Rashidy, fatma M. Talaa","doi":"10.21608/njccs.2022.280047","DOIUrl":null,"url":null,"abstract":"Instance segmentation is a challenging computer vision task that requires the prediction of object instances and their per-pixel segmentation mask. This makes it a hybrid of semantic segmentation and object detection. It detects and delineates each distinct object of interest appearing in an image. Mask R-CNN model is common for instance segmentation that has several versions for improving this task. We proposed a simple comparison between Fifteenth different version frameworks from Mask-RCNN for object instance segmentation. Our survey representing the difference between the popular versions of Mask R-CNN. The Mask R-CNN method extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. The results in most versions were implemented on of the COCO dataset that created for instance segmentation tasks.","PeriodicalId":277392,"journal":{"name":"Nile Journal of Communication and Computer Science","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Review: Mask R-CNN Models\",\"authors\":\"Esraa Hassan, Nora El-Rashidy, fatma M. Talaa\",\"doi\":\"10.21608/njccs.2022.280047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instance segmentation is a challenging computer vision task that requires the prediction of object instances and their per-pixel segmentation mask. This makes it a hybrid of semantic segmentation and object detection. It detects and delineates each distinct object of interest appearing in an image. Mask R-CNN model is common for instance segmentation that has several versions for improving this task. We proposed a simple comparison between Fifteenth different version frameworks from Mask-RCNN for object instance segmentation. Our survey representing the difference between the popular versions of Mask R-CNN. The Mask R-CNN method extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. The results in most versions were implemented on of the COCO dataset that created for instance segmentation tasks.\",\"PeriodicalId\":277392,\"journal\":{\"name\":\"Nile Journal of Communication and Computer Science\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nile Journal of Communication and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/njccs.2022.280047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nile Journal of Communication and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/njccs.2022.280047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

实例分割是一项具有挑战性的计算机视觉任务,需要预测对象实例及其逐像素分割掩码。这使它成为语义分割和对象检测的混合体。它检测并描绘出图像中出现的每个不同的感兴趣的物体。Mask R-CNN模型通常用于实例分割,有几个版本用于改进此任务。我们对来自Mask-RCNN的15个不同版本的对象实例分割框架进行了简单的比较。我们的调查代表了流行版本的面具R-CNN之间的差异。Mask R-CNN方法扩展了Faster R-CNN,在现有的边界框识别分支的基础上,增加了一个用于预测对象掩码的分支。大多数版本的结果都是在为实例分割任务创建的COCO数据集上实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review: Mask R-CNN Models
Instance segmentation is a challenging computer vision task that requires the prediction of object instances and their per-pixel segmentation mask. This makes it a hybrid of semantic segmentation and object detection. It detects and delineates each distinct object of interest appearing in an image. Mask R-CNN model is common for instance segmentation that has several versions for improving this task. We proposed a simple comparison between Fifteenth different version frameworks from Mask-RCNN for object instance segmentation. Our survey representing the difference between the popular versions of Mask R-CNN. The Mask R-CNN method extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. The results in most versions were implemented on of the COCO dataset that created for instance segmentation tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信