自动自适应元数据生成图像检索

H. Sasaki, Y. Kiyoki
{"title":"自动自适应元数据生成图像检索","authors":"H. Sasaki, Y. Kiyoki","doi":"10.1109/SAINTW.2005.39","DOIUrl":null,"url":null,"abstract":"In this paper, we present an automatic adaptive metadata generation system using content analysis of sample images. First, our system screens out improper query images for metadata generation by using CBIR that computes structural similarity between sample images and query images. Second, the system generates metadata by selecting sample indexes attached to the sample images that are structurally similar to query images. Third, the system detects improper metadata and re-generates proper metadata by identifying wrongly selected metadata. Our system has improved metadata generation by 23.5% on recall ratio and 37% on fallout ratio rather than just using the results of content analysis.","PeriodicalId":220913,"journal":{"name":"2005 Symposium on Applications and the Internet Workshops (SAINT 2005 Workshops)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automatic Adaptive Metadata Generation for Image Retrieval\",\"authors\":\"H. Sasaki, Y. Kiyoki\",\"doi\":\"10.1109/SAINTW.2005.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an automatic adaptive metadata generation system using content analysis of sample images. First, our system screens out improper query images for metadata generation by using CBIR that computes structural similarity between sample images and query images. Second, the system generates metadata by selecting sample indexes attached to the sample images that are structurally similar to query images. Third, the system detects improper metadata and re-generates proper metadata by identifying wrongly selected metadata. Our system has improved metadata generation by 23.5% on recall ratio and 37% on fallout ratio rather than just using the results of content analysis.\",\"PeriodicalId\":220913,\"journal\":{\"name\":\"2005 Symposium on Applications and the Internet Workshops (SAINT 2005 Workshops)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 Symposium on Applications and the Internet Workshops (SAINT 2005 Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAINTW.2005.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 Symposium on Applications and the Internet Workshops (SAINT 2005 Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAINTW.2005.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于样本图像内容分析的自适应元数据自动生成系统。首先,我们的系统通过使用CBIR(计算样本图像和查询图像之间的结构相似性)来筛选不合适的查询图像以生成元数据。其次,系统通过选择在结构上与查询图像相似的样本图像附加的样本索引来生成元数据。第三,系统检测不正确的元数据,并通过识别错误选择的元数据重新生成正确的元数据。我们的系统将元数据生成的召回率提高了23.5%,沉降率提高了37%,而不仅仅是使用内容分析的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Adaptive Metadata Generation for Image Retrieval
In this paper, we present an automatic adaptive metadata generation system using content analysis of sample images. First, our system screens out improper query images for metadata generation by using CBIR that computes structural similarity between sample images and query images. Second, the system generates metadata by selecting sample indexes attached to the sample images that are structurally similar to query images. Third, the system detects improper metadata and re-generates proper metadata by identifying wrongly selected metadata. Our system has improved metadata generation by 23.5% on recall ratio and 37% on fallout ratio rather than just using the results of content analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信