{"title":"非结构化网络中聚合的快速估计","authors":"Carlos Baquero, Paulo Sérgio Almeida, R. Menezes","doi":"10.1109/ICAS.2009.31","DOIUrl":null,"url":null,"abstract":"Aggregation of data values plays an important role on distributed computations, in particular over peer-to-peer and sensor networks, as it can provide a summary of some global system property and direct the actions of self-adaptive distributed algorithms. Examples include using estimates of the network size to dimension distributed hash tables or estimates of the average system load to direct load-balancing. Distributed aggregation using non-idempotent functions, like sums, is not trivial as it is not easy to prevent a given value from being accounted for multiple times; this is especially the case if no centralized algorithms or global identifiers can be used. This paper introduces Extrema Propagation, a probabilistic technique for distributed estimation of the sum of positive real numbers. The technique relies on the exchange of duplicate insensitive messages and can be applied in flood and/or epidemic settings, where multi-path routing occurs; it is tolerant of message loss; it is fast, as the number of message exchange steps equals the diameter; and it is fully distributed, with no single point of failure and the result produced at every node.","PeriodicalId":258907,"journal":{"name":"2009 Fifth International Conference on Autonomic and Autonomous Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Fast Estimation of Aggregates in Unstructured Networks\",\"authors\":\"Carlos Baquero, Paulo Sérgio Almeida, R. Menezes\",\"doi\":\"10.1109/ICAS.2009.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aggregation of data values plays an important role on distributed computations, in particular over peer-to-peer and sensor networks, as it can provide a summary of some global system property and direct the actions of self-adaptive distributed algorithms. Examples include using estimates of the network size to dimension distributed hash tables or estimates of the average system load to direct load-balancing. Distributed aggregation using non-idempotent functions, like sums, is not trivial as it is not easy to prevent a given value from being accounted for multiple times; this is especially the case if no centralized algorithms or global identifiers can be used. This paper introduces Extrema Propagation, a probabilistic technique for distributed estimation of the sum of positive real numbers. The technique relies on the exchange of duplicate insensitive messages and can be applied in flood and/or epidemic settings, where multi-path routing occurs; it is tolerant of message loss; it is fast, as the number of message exchange steps equals the diameter; and it is fully distributed, with no single point of failure and the result produced at every node.\",\"PeriodicalId\":258907,\"journal\":{\"name\":\"2009 Fifth International Conference on Autonomic and Autonomous Systems\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fifth International Conference on Autonomic and Autonomous Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAS.2009.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Autonomic and Autonomous Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAS.2009.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast Estimation of Aggregates in Unstructured Networks
Aggregation of data values plays an important role on distributed computations, in particular over peer-to-peer and sensor networks, as it can provide a summary of some global system property and direct the actions of self-adaptive distributed algorithms. Examples include using estimates of the network size to dimension distributed hash tables or estimates of the average system load to direct load-balancing. Distributed aggregation using non-idempotent functions, like sums, is not trivial as it is not easy to prevent a given value from being accounted for multiple times; this is especially the case if no centralized algorithms or global identifiers can be used. This paper introduces Extrema Propagation, a probabilistic technique for distributed estimation of the sum of positive real numbers. The technique relies on the exchange of duplicate insensitive messages and can be applied in flood and/or epidemic settings, where multi-path routing occurs; it is tolerant of message loss; it is fast, as the number of message exchange steps equals the diameter; and it is fully distributed, with no single point of failure and the result produced at every node.