生成图像中物体间空间关系的描述

A. Muscat, A. Belz
{"title":"生成图像中物体间空间关系的描述","authors":"A. Muscat, A. Belz","doi":"10.18653/v1/W15-4717","DOIUrl":null,"url":null,"abstract":"We investigate the task of predicting prepositions that can be used to describe the spatial relationships between pairs of objects depicted in images. We explore the extent to which such spatial prepositions can be predicted from (a) language information, (b) visual information, and (c) combinations of the two. In this paper we describe the dataset of object pairs and prepositions we have created, and report first results for predicting prepositions for object pairs, using a Naive Bayes framework. The features we use include object class labels and geometrical features computed from object bounding boxes. We evaluate the results in terms of accuracy against human-selected prepositions.","PeriodicalId":307841,"journal":{"name":"European Workshop on Natural Language Generation","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Generating Descriptions of Spatial Relations between Objects in Images\",\"authors\":\"A. Muscat, A. Belz\",\"doi\":\"10.18653/v1/W15-4717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the task of predicting prepositions that can be used to describe the spatial relationships between pairs of objects depicted in images. We explore the extent to which such spatial prepositions can be predicted from (a) language information, (b) visual information, and (c) combinations of the two. In this paper we describe the dataset of object pairs and prepositions we have created, and report first results for predicting prepositions for object pairs, using a Naive Bayes framework. The features we use include object class labels and geometrical features computed from object bounding boxes. We evaluate the results in terms of accuracy against human-selected prepositions.\",\"PeriodicalId\":307841,\"journal\":{\"name\":\"European Workshop on Natural Language Generation\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Workshop on Natural Language Generation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W15-4717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Workshop on Natural Language Generation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W15-4717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们研究了预测介词的任务,这些介词可以用来描述图像中描绘的物体对之间的空间关系。我们探讨了这些空间介词在多大程度上可以从(a)语言信息、(b)视觉信息和(c)两者的组合来预测。在本文中,我们描述了我们创建的对象对和介词的数据集,并报告了使用朴素贝叶斯框架预测对象对介词的初步结果。我们使用的特征包括对象类标签和从对象边界框计算的几何特征。我们根据人类选择的介词的准确性来评估结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating Descriptions of Spatial Relations between Objects in Images
We investigate the task of predicting prepositions that can be used to describe the spatial relationships between pairs of objects depicted in images. We explore the extent to which such spatial prepositions can be predicted from (a) language information, (b) visual information, and (c) combinations of the two. In this paper we describe the dataset of object pairs and prepositions we have created, and report first results for predicting prepositions for object pairs, using a Naive Bayes framework. The features we use include object class labels and geometrical features computed from object bounding boxes. We evaluate the results in terms of accuracy against human-selected prepositions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信