Jian-Ming Li, Xiaojing Wang, Rong-Sheng He, Zhong-Xian Chi
{"title":"基于gpu加速的高效细粒度并行遗传算法","authors":"Jian-Ming Li, Xiaojing Wang, Rong-Sheng He, Zhong-Xian Chi","doi":"10.1109/NPC.2007.108","DOIUrl":null,"url":null,"abstract":"Fine-grained parallel genetic algorithm (FGPGA), though a popular and robust strategy for solving complicated optimization problems, is sometimes inconvenient to use as its population size is restricted by heavy data communication and the parallel computers are relatively difficult to use, manage, maintain and may not be accessible to most researchers. In this paper, we propose a FGPGA method based on GPU-acceleration, which maps parallel GA algorithm to texture-rendering on consumer-level graphics cards. The analytical results demonstrate that the proposed method increases the population size, speeds up its execution and provides ordinary users with a feasible FGPGA solution.","PeriodicalId":278518,"journal":{"name":"2007 IFIP International Conference on Network and Parallel Computing Workshops (NPC 2007)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"An Efficient Fine-grained Parallel Genetic Algorithm Based on GPU-Accelerated\",\"authors\":\"Jian-Ming Li, Xiaojing Wang, Rong-Sheng He, Zhong-Xian Chi\",\"doi\":\"10.1109/NPC.2007.108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fine-grained parallel genetic algorithm (FGPGA), though a popular and robust strategy for solving complicated optimization problems, is sometimes inconvenient to use as its population size is restricted by heavy data communication and the parallel computers are relatively difficult to use, manage, maintain and may not be accessible to most researchers. In this paper, we propose a FGPGA method based on GPU-acceleration, which maps parallel GA algorithm to texture-rendering on consumer-level graphics cards. The analytical results demonstrate that the proposed method increases the population size, speeds up its execution and provides ordinary users with a feasible FGPGA solution.\",\"PeriodicalId\":278518,\"journal\":{\"name\":\"2007 IFIP International Conference on Network and Parallel Computing Workshops (NPC 2007)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IFIP International Conference on Network and Parallel Computing Workshops (NPC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NPC.2007.108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IFIP International Conference on Network and Parallel Computing Workshops (NPC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NPC.2007.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Efficient Fine-grained Parallel Genetic Algorithm Based on GPU-Accelerated
Fine-grained parallel genetic algorithm (FGPGA), though a popular and robust strategy for solving complicated optimization problems, is sometimes inconvenient to use as its population size is restricted by heavy data communication and the parallel computers are relatively difficult to use, manage, maintain and may not be accessible to most researchers. In this paper, we propose a FGPGA method based on GPU-acceleration, which maps parallel GA algorithm to texture-rendering on consumer-level graphics cards. The analytical results demonstrate that the proposed method increases the population size, speeds up its execution and provides ordinary users with a feasible FGPGA solution.