电子电路故障诊断的神经网络新方法

WenJie Tian, Yu Geng
{"title":"电子电路故障诊断的神经网络新方法","authors":"WenJie Tian, Yu Geng","doi":"10.1109/ETCS.2009.318","DOIUrl":null,"url":null,"abstract":"To overcome the deficiencies of single neural network such as low diagnosis precision, long training time and bad generalized ability, an integrated neural network classifier is proposed for electronic circuit fault diagnosis in the paper. The investigation shows that the proposed method has higher classification precision and reliability, and is an ideal pattern classifier. Both simulation and experiment indicate that the proposed method is quite effective and ubiquitous.","PeriodicalId":422513,"journal":{"name":"2009 First International Workshop on Education Technology and Computer Science","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Neural Network Approach to Electronic Circuit Fault Diagnosis\",\"authors\":\"WenJie Tian, Yu Geng\",\"doi\":\"10.1109/ETCS.2009.318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To overcome the deficiencies of single neural network such as low diagnosis precision, long training time and bad generalized ability, an integrated neural network classifier is proposed for electronic circuit fault diagnosis in the paper. The investigation shows that the proposed method has higher classification precision and reliability, and is an ideal pattern classifier. Both simulation and experiment indicate that the proposed method is quite effective and ubiquitous.\",\"PeriodicalId\":422513,\"journal\":{\"name\":\"2009 First International Workshop on Education Technology and Computer Science\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First International Workshop on Education Technology and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETCS.2009.318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First International Workshop on Education Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCS.2009.318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对单一神经网络诊断精度低、训练时间长、泛化能力差等缺点,提出了一种用于电子电路故障诊断的综合神经网络分类器。研究表明,该方法具有较高的分类精度和可靠性,是一种理想的模式分类器。仿真和实验结果表明,该方法具有较好的有效性和普适性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Neural Network Approach to Electronic Circuit Fault Diagnosis
To overcome the deficiencies of single neural network such as low diagnosis precision, long training time and bad generalized ability, an integrated neural network classifier is proposed for electronic circuit fault diagnosis in the paper. The investigation shows that the proposed method has higher classification precision and reliability, and is an ideal pattern classifier. Both simulation and experiment indicate that the proposed method is quite effective and ubiquitous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信