基于Lyapunov自适应算法的非线性自适应RBF神经滤波器及其在非线性信道均衡中的应用

K. Seng, Z. Man, H. Wu
{"title":"基于Lyapunov自适应算法的非线性自适应RBF神经滤波器及其在非线性信道均衡中的应用","authors":"K. Seng, Z. Man, H. Wu","doi":"10.1109/ISSPA.1999.818135","DOIUrl":null,"url":null,"abstract":"An RBF neural network, combined with a Lyapunov adaptation (LA) algorithm is proposed for linear or nonlinear channel equalization. The output observations of the nonlinear channel are regarded as inputs of the RBF neural filter. The weights of the neural network are updated by the LA algorithm that is based on Lyapunov stability theory so that the error between the reference signal and output of the RBF neural filter can converge to zero asymptotically. The stochastic properties of the signals are not required and the stability is guaranteed by the Lyapunov stability theory. The design of the LA algorithm is extremely simplified compared with existing LMS and RLS algorithms. Hence, the proposed scheme possesses distinct advantages of stability, speed of convergence, convergence properties and some key features of RBF neural networks over the conventional linear filter with RLS and LMS for channel equalization.","PeriodicalId":302569,"journal":{"name":"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Nonlinear adaptive RBF neural filter with Lyapunov adaptation algorithm and its application to nonlinear channel equalization\",\"authors\":\"K. Seng, Z. Man, H. Wu\",\"doi\":\"10.1109/ISSPA.1999.818135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An RBF neural network, combined with a Lyapunov adaptation (LA) algorithm is proposed for linear or nonlinear channel equalization. The output observations of the nonlinear channel are regarded as inputs of the RBF neural filter. The weights of the neural network are updated by the LA algorithm that is based on Lyapunov stability theory so that the error between the reference signal and output of the RBF neural filter can converge to zero asymptotically. The stochastic properties of the signals are not required and the stability is guaranteed by the Lyapunov stability theory. The design of the LA algorithm is extremely simplified compared with existing LMS and RLS algorithms. Hence, the proposed scheme possesses distinct advantages of stability, speed of convergence, convergence properties and some key features of RBF neural networks over the conventional linear filter with RLS and LMS for channel equalization.\",\"PeriodicalId\":302569,\"journal\":{\"name\":\"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.1999.818135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.1999.818135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

提出了一种结合Lyapunov自适应(LA)算法的RBF神经网络用于线性或非线性信道均衡。将非线性信道的输出观测值作为RBF神经滤波器的输入。利用基于Lyapunov稳定性理论的LA算法更新神经网络的权值,使参考信号与RBF神经滤波器输出的误差渐近收敛于零。该系统不需要信号的随机特性,并通过李雅普诺夫稳定性理论保证了系统的稳定性。与现有的LMS和RLS算法相比,LA算法的设计大大简化。因此,该方案在稳定性、收敛速度、收敛性能和RBF神经网络的一些关键特征等方面,都明显优于采用RLS和LMS进行信道均衡的传统线性滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear adaptive RBF neural filter with Lyapunov adaptation algorithm and its application to nonlinear channel equalization
An RBF neural network, combined with a Lyapunov adaptation (LA) algorithm is proposed for linear or nonlinear channel equalization. The output observations of the nonlinear channel are regarded as inputs of the RBF neural filter. The weights of the neural network are updated by the LA algorithm that is based on Lyapunov stability theory so that the error between the reference signal and output of the RBF neural filter can converge to zero asymptotically. The stochastic properties of the signals are not required and the stability is guaranteed by the Lyapunov stability theory. The design of the LA algorithm is extremely simplified compared with existing LMS and RLS algorithms. Hence, the proposed scheme possesses distinct advantages of stability, speed of convergence, convergence properties and some key features of RBF neural networks over the conventional linear filter with RLS and LMS for channel equalization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信