部分匹配下的高效形状检索

M. Demirci
{"title":"部分匹配下的高效形状检索","authors":"M. Demirci","doi":"10.1109/ICPR.2010.749","DOIUrl":null,"url":null,"abstract":"Indexing into large database systems is essential for a number of applications. This paper presents a new indexing structure, which overcomes an important restriction of a previous indexing technique using a recently developed theorem from the domain of matrix analysis. Specifically, given a set of distance values computed by distance function, which do not necessarily satisfy the triangle inequality, this paper shows that computing its nearest distance values that obey the properties of a metric enables us to overcome the limitations of the previous indexing algorithm. We demonstrate the proposed framework in the context of a recognition task.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Efficient Shape Retrieval Under Partial Matching\",\"authors\":\"M. Demirci\",\"doi\":\"10.1109/ICPR.2010.749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indexing into large database systems is essential for a number of applications. This paper presents a new indexing structure, which overcomes an important restriction of a previous indexing technique using a recently developed theorem from the domain of matrix analysis. Specifically, given a set of distance values computed by distance function, which do not necessarily satisfy the triangle inequality, this paper shows that computing its nearest distance values that obey the properties of a metric enables us to overcome the limitations of the previous indexing algorithm. We demonstrate the proposed framework in the context of a recognition task.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在大型数据库系统中建立索引对于许多应用程序都是必不可少的。本文提出了一种新的索引结构,利用矩阵分析领域的一个新定理,克服了以往索引技术的一个重要限制。具体来说,给定一组不一定满足三角不等式的距离函数计算的距离值,本文表明计算其符合度量性质的最近距离值使我们能够克服以往索引算法的局限性。我们在一个识别任务的背景下演示了所提出的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Shape Retrieval Under Partial Matching
Indexing into large database systems is essential for a number of applications. This paper presents a new indexing structure, which overcomes an important restriction of a previous indexing technique using a recently developed theorem from the domain of matrix analysis. Specifically, given a set of distance values computed by distance function, which do not necessarily satisfy the triangle inequality, this paper shows that computing its nearest distance values that obey the properties of a metric enables us to overcome the limitations of the previous indexing algorithm. We demonstrate the proposed framework in the context of a recognition task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信