石墨烯基聚合物纳米复合材料的多种应用

P. Majumdar, Amartya Chakrabarti
{"title":"石墨烯基聚合物纳米复合材料的多种应用","authors":"P. Majumdar, Amartya Chakrabarti","doi":"10.4018/978-1-7998-1530-3.ch003","DOIUrl":null,"url":null,"abstract":"Polymer nanocomposites are unique materials reinforced with nanoscale additives. Among a variety of nanomaterials available to act as filler additives in different polymer matrices, graphene is the most versatile one. Graphene-based polymer nanocomposites have improved electrical, mechanical, chemical, and thermal properties, which make them suitable for applications in the electronics, energy, sensor, and space sectors. Graphene, the nanosized filler, can be prepared using either a top-down or a bottom-up approach and dispersed in the polymer matrix utilizing different conventional techniques. The nanocomposite materials find usage in suitable area of applications depending on their specific characteristics. This chapter discusses the current state-of-the-art manufacturing techniques for graphene and graphene-based nanocomposite materials. Application of graphene-based polymer nanocomposites in the various fields with an emphasis on the areas high heat flux applications requiring enhanced thermal conductivity will be an additional major focus of this chapter.","PeriodicalId":145165,"journal":{"name":"Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Diverse Applications of Graphene-Based Polymer Nanocomposites\",\"authors\":\"P. Majumdar, Amartya Chakrabarti\",\"doi\":\"10.4018/978-1-7998-1530-3.ch003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymer nanocomposites are unique materials reinforced with nanoscale additives. Among a variety of nanomaterials available to act as filler additives in different polymer matrices, graphene is the most versatile one. Graphene-based polymer nanocomposites have improved electrical, mechanical, chemical, and thermal properties, which make them suitable for applications in the electronics, energy, sensor, and space sectors. Graphene, the nanosized filler, can be prepared using either a top-down or a bottom-up approach and dispersed in the polymer matrix utilizing different conventional techniques. The nanocomposite materials find usage in suitable area of applications depending on their specific characteristics. This chapter discusses the current state-of-the-art manufacturing techniques for graphene and graphene-based nanocomposite materials. Application of graphene-based polymer nanocomposites in the various fields with an emphasis on the areas high heat flux applications requiring enhanced thermal conductivity will be an additional major focus of this chapter.\",\"PeriodicalId\":145165,\"journal\":{\"name\":\"Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-1530-3.ch003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-1530-3.ch003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

聚合物纳米复合材料是用纳米级添加剂增强的独特材料。在各种各样的纳米材料中,石墨烯是最通用的一种。石墨烯基聚合物纳米复合材料具有改进的电学、机械、化学和热性能,这使得它们适合应用于电子、能源、传感器和航天领域。石墨烯是一种纳米级填充物,可以采用自上而下或自下而上的方法制备,并利用不同的传统技术分散在聚合物基质中。纳米复合材料根据其特定的特性在合适的应用领域中得到应用。本章讨论了目前最先进的石墨烯和石墨烯基纳米复合材料的制造技术。石墨烯基聚合物纳米复合材料在各个领域的应用,重点是需要增强导热性的高热流应用领域,将是本章的另一个主要重点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diverse Applications of Graphene-Based Polymer Nanocomposites
Polymer nanocomposites are unique materials reinforced with nanoscale additives. Among a variety of nanomaterials available to act as filler additives in different polymer matrices, graphene is the most versatile one. Graphene-based polymer nanocomposites have improved electrical, mechanical, chemical, and thermal properties, which make them suitable for applications in the electronics, energy, sensor, and space sectors. Graphene, the nanosized filler, can be prepared using either a top-down or a bottom-up approach and dispersed in the polymer matrix utilizing different conventional techniques. The nanocomposite materials find usage in suitable area of applications depending on their specific characteristics. This chapter discusses the current state-of-the-art manufacturing techniques for graphene and graphene-based nanocomposite materials. Application of graphene-based polymer nanocomposites in the various fields with an emphasis on the areas high heat flux applications requiring enhanced thermal conductivity will be an additional major focus of this chapter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信