智能城市空气质量预测的回归技术比较

K. Garg, Manik Gupta, B. Sharma, I. Dhaou
{"title":"智能城市空气质量预测的回归技术比较","authors":"K. Garg, Manik Gupta, B. Sharma, I. Dhaou","doi":"10.1109/ICAISC56366.2023.10085369","DOIUrl":null,"url":null,"abstract":"The expansion of the internet of things (IoT) and Big Data are two factors that have contributed to the rise in popularity of smart cities. The ability to anticipate the quality of the air in an area with precision and efficiency is one of the fundamental building blocks of a smart city. The amount of polluted air found in smart cities throughout the world has been gradually growing. Because of this, there has been a rise in the concentration of several air pollutants in the environment, including particulate matter (PM 10), sulphur dioxide (SO2), and PM 2.5, amongst others. Because of the possibility of uncontrollable repercussions, such as an increase in the severity of asthma and cardiovascular disease, this situation poses a risk to the country and to the people who live in it. Heavy industry and vehicle exhaust have been major contributors to the growth of air pollution in smart cities such as New Delhi, Bombay, Chandigarh, and Bengaluru in India. The purpose of this investigation is to compare and contrast the efficiency of a variety of machine learning methods in order to assess the precision of the air quality index (AQI) projection of PM 2.5 in Chandigarh, India. Models for predicting AQI are trained and tested using a variety of statistical techniques like Linear regression, Lasso regression, KNN regression, and Random Forest regression This Root Mean Square Error (RMSE) found for Linear regression, Lasso regression, KNN regression, and Random Forest regression are 31.01, 29,45, 37.09 and 28.3. From all four models, random forest regression was more accurate than the other three regression models in estimating PM 2.5 levels in India’s smart city.","PeriodicalId":422888,"journal":{"name":"2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Comparison of Regression Techniques for Prediction of Air Quality in Smart Cities\",\"authors\":\"K. Garg, Manik Gupta, B. Sharma, I. Dhaou\",\"doi\":\"10.1109/ICAISC56366.2023.10085369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The expansion of the internet of things (IoT) and Big Data are two factors that have contributed to the rise in popularity of smart cities. The ability to anticipate the quality of the air in an area with precision and efficiency is one of the fundamental building blocks of a smart city. The amount of polluted air found in smart cities throughout the world has been gradually growing. Because of this, there has been a rise in the concentration of several air pollutants in the environment, including particulate matter (PM 10), sulphur dioxide (SO2), and PM 2.5, amongst others. Because of the possibility of uncontrollable repercussions, such as an increase in the severity of asthma and cardiovascular disease, this situation poses a risk to the country and to the people who live in it. Heavy industry and vehicle exhaust have been major contributors to the growth of air pollution in smart cities such as New Delhi, Bombay, Chandigarh, and Bengaluru in India. The purpose of this investigation is to compare and contrast the efficiency of a variety of machine learning methods in order to assess the precision of the air quality index (AQI) projection of PM 2.5 in Chandigarh, India. Models for predicting AQI are trained and tested using a variety of statistical techniques like Linear regression, Lasso regression, KNN regression, and Random Forest regression This Root Mean Square Error (RMSE) found for Linear regression, Lasso regression, KNN regression, and Random Forest regression are 31.01, 29,45, 37.09 and 28.3. From all four models, random forest regression was more accurate than the other three regression models in estimating PM 2.5 levels in India’s smart city.\",\"PeriodicalId\":422888,\"journal\":{\"name\":\"2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAISC56366.2023.10085369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAISC56366.2023.10085369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

物联网(IoT)和大数据的发展是智慧城市越来越受欢迎的两个因素。准确、高效地预测某一地区空气质量的能力是智慧城市的基本组成部分之一。在世界各地的智能城市中,被污染的空气量一直在逐渐增加。正因为如此,环境中几种空气污染物的浓度有所上升,包括颗粒物(pm10)、二氧化硫(SO2)和pm2.5等。由于可能产生无法控制的影响,例如哮喘和心血管疾病的严重程度增加,这种情况对国家和生活在其中的人民构成了威胁。重工业和汽车尾气是印度新德里、孟买、昌迪加尔和班加罗尔等智能城市空气污染加剧的主要原因。本调查的目的是比较和对比各种机器学习方法的效率,以评估印度昌迪加尔PM 2.5空气质量指数(AQI)预测的精度。预测AQI的模型使用各种统计技术如线性回归、Lasso回归、KNN回归和随机森林回归进行训练和测试。线性回归、Lasso回归、KNN回归和随机森林回归的均方根误差(RMSE)分别为31.01、29、45、37.09和28.3。从所有四种模型中,随机森林回归比其他三种回归模型更准确地估计印度智慧城市的pm2.5水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison of Regression Techniques for Prediction of Air Quality in Smart Cities
The expansion of the internet of things (IoT) and Big Data are two factors that have contributed to the rise in popularity of smart cities. The ability to anticipate the quality of the air in an area with precision and efficiency is one of the fundamental building blocks of a smart city. The amount of polluted air found in smart cities throughout the world has been gradually growing. Because of this, there has been a rise in the concentration of several air pollutants in the environment, including particulate matter (PM 10), sulphur dioxide (SO2), and PM 2.5, amongst others. Because of the possibility of uncontrollable repercussions, such as an increase in the severity of asthma and cardiovascular disease, this situation poses a risk to the country and to the people who live in it. Heavy industry and vehicle exhaust have been major contributors to the growth of air pollution in smart cities such as New Delhi, Bombay, Chandigarh, and Bengaluru in India. The purpose of this investigation is to compare and contrast the efficiency of a variety of machine learning methods in order to assess the precision of the air quality index (AQI) projection of PM 2.5 in Chandigarh, India. Models for predicting AQI are trained and tested using a variety of statistical techniques like Linear regression, Lasso regression, KNN regression, and Random Forest regression This Root Mean Square Error (RMSE) found for Linear regression, Lasso regression, KNN regression, and Random Forest regression are 31.01, 29,45, 37.09 and 28.3. From all four models, random forest regression was more accurate than the other three regression models in estimating PM 2.5 levels in India’s smart city.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信