基于多数投票机制的伪相关反馈

Mawloud Mosbah, Bachir Boucheham
{"title":"基于多数投票机制的伪相关反馈","authors":"Mawloud Mosbah, Bachir Boucheham","doi":"10.1504/IJWS.2017.10009576","DOIUrl":null,"url":null,"abstract":"The pseudo relevance feedback mechanism has come to improve the performance of the CBIR systems before visualising the final results and without any user assistance. In this paper, we show the superiority of our proposed a pseudo relevance feedback scheme 'majority voting algorithm'. The algorithm is compared to other approaches of the literature of that clustering materialised on two well known clustering algorithms namely: hierarchical agglomerative clustering method (HACM) and K-means and pseudo query reformulation materialised on pseudo query point movement, pseudo standard Rocchio formula and pseudo adaptive shifting query. Experiments are conducted on the heterogeneous Wang (COREL-1K) database and Google image engine using the colour moments as a signature. This work enables us to compare some pseudo relevance feedback techniques of the literature while the obtained results show the clear superiority of our proposed algorithm.","PeriodicalId":425045,"journal":{"name":"Int. J. Web Sci.","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pseudo relevance feedback based on majority voting mechanism\",\"authors\":\"Mawloud Mosbah, Bachir Boucheham\",\"doi\":\"10.1504/IJWS.2017.10009576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pseudo relevance feedback mechanism has come to improve the performance of the CBIR systems before visualising the final results and without any user assistance. In this paper, we show the superiority of our proposed a pseudo relevance feedback scheme 'majority voting algorithm'. The algorithm is compared to other approaches of the literature of that clustering materialised on two well known clustering algorithms namely: hierarchical agglomerative clustering method (HACM) and K-means and pseudo query reformulation materialised on pseudo query point movement, pseudo standard Rocchio formula and pseudo adaptive shifting query. Experiments are conducted on the heterogeneous Wang (COREL-1K) database and Google image engine using the colour moments as a signature. This work enables us to compare some pseudo relevance feedback techniques of the literature while the obtained results show the clear superiority of our proposed algorithm.\",\"PeriodicalId\":425045,\"journal\":{\"name\":\"Int. J. Web Sci.\",\"volume\":\"235 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Web Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJWS.2017.10009576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Web Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJWS.2017.10009576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

伪相关反馈机制已经开始在可视化最终结果之前改善CBIR系统的性能,并且没有任何用户的帮助。在本文中,我们展示了我们提出的伪相关反馈方案“多数投票算法”的优越性。将该算法与文献中的其他方法进行了比较,其中聚类主要基于两种著名的聚类算法,即层次聚类方法(HACM)和K-means,以及基于伪查询点移动、伪标准Rocchio公式和伪自适应移位查询实现的伪查询重构。在异构Wang (COREL-1K)数据库和谷歌图像引擎上使用颜色矩作为签名进行了实验。这项工作使我们能够比较文献中的一些伪相关反馈技术,而获得的结果显示了我们提出的算法的明显优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pseudo relevance feedback based on majority voting mechanism
The pseudo relevance feedback mechanism has come to improve the performance of the CBIR systems before visualising the final results and without any user assistance. In this paper, we show the superiority of our proposed a pseudo relevance feedback scheme 'majority voting algorithm'. The algorithm is compared to other approaches of the literature of that clustering materialised on two well known clustering algorithms namely: hierarchical agglomerative clustering method (HACM) and K-means and pseudo query reformulation materialised on pseudo query point movement, pseudo standard Rocchio formula and pseudo adaptive shifting query. Experiments are conducted on the heterogeneous Wang (COREL-1K) database and Google image engine using the colour moments as a signature. This work enables us to compare some pseudo relevance feedback techniques of the literature while the obtained results show the clear superiority of our proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信