使用自组织地图调整日内季节性

Walid Ben Omrane, Eric de Bodt
{"title":"使用自组织地图调整日内季节性","authors":"Walid Ben Omrane, Eric de Bodt","doi":"10.2139/ssrn.720441","DOIUrl":null,"url":null,"abstract":"The existence of an intra-day seasonality component within financial market variables (volatility, volume, activity,. . .), has been highlighted in many previous works. To adjust raw data from their cyclical component, many studies start by implementing the intra-daily average observations model (IAOM) and/or some smoothing techniques (e.g. the kernel method) in order to remove the day of the week effect. When seasonality involves only a deterministic component, IAOM method succeed in estimating periodicity almost without estimation error. However, when seasonality contains both deterministic and stochastic components (e.g. closed days), we show that either the IAOM or the kernel method fail to capture it. We introduce the use of the self-organizing maps (SOM) as a solution. SOM are based on neural network learning and nonlinear projections. Their flexibility allows capturing seasonality even in the presence of stochastic cycles.","PeriodicalId":114865,"journal":{"name":"ERN: Neural Networks & Related Topics (Topic)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Using Self-Organizing Maps to Adjust Intra-Day Seasonality\",\"authors\":\"Walid Ben Omrane, Eric de Bodt\",\"doi\":\"10.2139/ssrn.720441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of an intra-day seasonality component within financial market variables (volatility, volume, activity,. . .), has been highlighted in many previous works. To adjust raw data from their cyclical component, many studies start by implementing the intra-daily average observations model (IAOM) and/or some smoothing techniques (e.g. the kernel method) in order to remove the day of the week effect. When seasonality involves only a deterministic component, IAOM method succeed in estimating periodicity almost without estimation error. However, when seasonality contains both deterministic and stochastic components (e.g. closed days), we show that either the IAOM or the kernel method fail to capture it. We introduce the use of the self-organizing maps (SOM) as a solution. SOM are based on neural network learning and nonlinear projections. Their flexibility allows capturing seasonality even in the presence of stochastic cycles.\",\"PeriodicalId\":114865,\"journal\":{\"name\":\"ERN: Neural Networks & Related Topics (Topic)\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Neural Networks & Related Topics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.720441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Neural Networks & Related Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.720441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在金融市场变量(波动性、交易量、活动等)中存在日内季节性成分,这在以前的许多著作中都得到了强调。为了调整原始数据的周期性成分,许多研究开始实施每日平均观测模型(IAOM)和/或一些平滑技术(例如核方法),以消除星期几的影响。当季节性仅涉及确定性成分时,iom方法几乎没有估计误差。然而,当季节性同时包含确定性和随机成分(例如关闭天数)时,我们表明IAOM或核方法都无法捕获它。我们介绍了使用自组织映射(SOM)作为解决方案。SOM是基于神经网络学习和非线性投影的。它们的灵活性允许捕捉季节性,即使在随机周期的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Self-Organizing Maps to Adjust Intra-Day Seasonality
The existence of an intra-day seasonality component within financial market variables (volatility, volume, activity,. . .), has been highlighted in many previous works. To adjust raw data from their cyclical component, many studies start by implementing the intra-daily average observations model (IAOM) and/or some smoothing techniques (e.g. the kernel method) in order to remove the day of the week effect. When seasonality involves only a deterministic component, IAOM method succeed in estimating periodicity almost without estimation error. However, when seasonality contains both deterministic and stochastic components (e.g. closed days), we show that either the IAOM or the kernel method fail to capture it. We introduce the use of the self-organizing maps (SOM) as a solution. SOM are based on neural network learning and nonlinear projections. Their flexibility allows capturing seasonality even in the presence of stochastic cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信