核磁共振:对比成像问题

B. Bonnard, M. Chyba, S. Glaser, J. Marriott, D. Sugny
{"title":"核磁共振:对比成像问题","authors":"B. Bonnard, M. Chyba, S. Glaser, J. Marriott, D. Sugny","doi":"10.1109/CDC.2011.6160769","DOIUrl":null,"url":null,"abstract":"Starting as a tool for characterization of organic molecules, the use of NMR has spread to areas as diverse as pharmacology, medical diagnostics (medical resonance imaging) and structural biology. Recent advancements on the study of spin dynamics strongly suggest the efficiency of geometric control theory to analyze the optimal synthesis. This paper focuses on a new approach to the contrast imaging problem using tools from geometric optimal control. It concerns the study of an uncoupled two-spin system and the problem is to bring one spin to the origin of the Bloch ball while maximizing the modulus of the magnetization vector of the second spin. It can be stated as a Mayer-type optimal problem and the Pontryagin Maximum Principle is used to select the optimal trajectories among the extremal solutions. Correlation between the contrast problem and the optimal transfer time problem is demonstrated. Further, we develop some analysis of the singular extremals and apply the results to examples of cerebrospinal fluid/water and grey/white matter of the cerebrum.","PeriodicalId":360068,"journal":{"name":"IEEE Conference on Decision and Control and European Control Conference","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nuclear magnetic resonance: The contrast imaging problem\",\"authors\":\"B. Bonnard, M. Chyba, S. Glaser, J. Marriott, D. Sugny\",\"doi\":\"10.1109/CDC.2011.6160769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Starting as a tool for characterization of organic molecules, the use of NMR has spread to areas as diverse as pharmacology, medical diagnostics (medical resonance imaging) and structural biology. Recent advancements on the study of spin dynamics strongly suggest the efficiency of geometric control theory to analyze the optimal synthesis. This paper focuses on a new approach to the contrast imaging problem using tools from geometric optimal control. It concerns the study of an uncoupled two-spin system and the problem is to bring one spin to the origin of the Bloch ball while maximizing the modulus of the magnetization vector of the second spin. It can be stated as a Mayer-type optimal problem and the Pontryagin Maximum Principle is used to select the optimal trajectories among the extremal solutions. Correlation between the contrast problem and the optimal transfer time problem is demonstrated. Further, we develop some analysis of the singular extremals and apply the results to examples of cerebrospinal fluid/water and grey/white matter of the cerebrum.\",\"PeriodicalId\":360068,\"journal\":{\"name\":\"IEEE Conference on Decision and Control and European Control Conference\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference on Decision and Control and European Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2011.6160769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Decision and Control and European Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2011.6160769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从作为表征有机分子的工具开始,核磁共振的使用已经扩展到药理学、医学诊断(医学磁共振成像)和结构生物学等各个领域。自旋动力学研究的最新进展有力地证明了几何控制理论在分析最优综合中的有效性。本文研究了一种利用几何最优控制方法解决对比度成像问题的新方法。它涉及一个非耦合双自旋系统的研究,问题是使一个自旋到达布洛赫球的原点,同时使第二个自旋的磁化矢量的模量最大化。它可以表述为一个mayer型最优问题,并使用庞特里亚金极大值原理在极值解中选择最优轨迹。证明了对比问题与最优传递时间问题之间的相关性。此外,我们发展了一些奇异极值的分析,并将结果应用于脑脊液/水和大脑灰质/白质的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nuclear magnetic resonance: The contrast imaging problem
Starting as a tool for characterization of organic molecules, the use of NMR has spread to areas as diverse as pharmacology, medical diagnostics (medical resonance imaging) and structural biology. Recent advancements on the study of spin dynamics strongly suggest the efficiency of geometric control theory to analyze the optimal synthesis. This paper focuses on a new approach to the contrast imaging problem using tools from geometric optimal control. It concerns the study of an uncoupled two-spin system and the problem is to bring one spin to the origin of the Bloch ball while maximizing the modulus of the magnetization vector of the second spin. It can be stated as a Mayer-type optimal problem and the Pontryagin Maximum Principle is used to select the optimal trajectories among the extremal solutions. Correlation between the contrast problem and the optimal transfer time problem is demonstrated. Further, we develop some analysis of the singular extremals and apply the results to examples of cerebrospinal fluid/water and grey/white matter of the cerebrum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信