通过alpha -匿名化技术保护社交网络中的隐私

Saptarshi Chakraborty, B. Tripathy
{"title":"通过alpha -匿名化技术保护社交网络中的隐私","authors":"Saptarshi Chakraborty, B. Tripathy","doi":"10.1145/2808797.2809354","DOIUrl":null,"url":null,"abstract":"We propose an (a, k) anonymity model based on the eigenvector centrality value of the nodes present in the raw graph and further extend it to propose (a, l) diversity model and recursive (a, c, l) diversity model which can handle the protection of the sensitive attributes associated with a particular actor. For anonymization purpose, we applied noise node addition technique to generate the anonymized graphs so that the structural property of the raw graph is preserved. Our proposed methods add noise nodes with very minimal social importance. We applied eigenvector centrality concept over traditional degree centrality concept to prevent mixing of highly influential nodes with less influential nodes in the equivalence groups.","PeriodicalId":371988,"journal":{"name":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Privacy preservation in social networks through alpha — Anonymization techniques\",\"authors\":\"Saptarshi Chakraborty, B. Tripathy\",\"doi\":\"10.1145/2808797.2809354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an (a, k) anonymity model based on the eigenvector centrality value of the nodes present in the raw graph and further extend it to propose (a, l) diversity model and recursive (a, c, l) diversity model which can handle the protection of the sensitive attributes associated with a particular actor. For anonymization purpose, we applied noise node addition technique to generate the anonymized graphs so that the structural property of the raw graph is preserved. Our proposed methods add noise nodes with very minimal social importance. We applied eigenvector centrality concept over traditional degree centrality concept to prevent mixing of highly influential nodes with less influential nodes in the equivalence groups.\",\"PeriodicalId\":371988,\"journal\":{\"name\":\"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2808797.2809354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808797.2809354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一个基于原始图中节点的特征向量中心值的(a, k)匿名模型,并进一步扩展到(a, l)多样性模型和递归(a, c, l)多样性模型,可以处理与特定参与者相关的敏感属性的保护。为了达到匿名化的目的,我们采用了噪声节点加法技术来生成匿名化图,以保持原始图的结构特性。我们提出的方法添加了具有最小社会重要性的噪声节点。我们将特征向量中心性概念应用于传统的度中心性概念,以防止等价群中影响较大的节点与影响较小的节点混合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Privacy preservation in social networks through alpha — Anonymization techniques
We propose an (a, k) anonymity model based on the eigenvector centrality value of the nodes present in the raw graph and further extend it to propose (a, l) diversity model and recursive (a, c, l) diversity model which can handle the protection of the sensitive attributes associated with a particular actor. For anonymization purpose, we applied noise node addition technique to generate the anonymized graphs so that the structural property of the raw graph is preserved. Our proposed methods add noise nodes with very minimal social importance. We applied eigenvector centrality concept over traditional degree centrality concept to prevent mixing of highly influential nodes with less influential nodes in the equivalence groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信