{"title":"基于asp - dm的分析平台自动选择","authors":"M. Fritz, Gang Shao, H. Schwarz","doi":"10.1145/3468791.3468802","DOIUrl":null,"url":null,"abstract":"The plethora of available analytic platforms escalates the difficulty of selecting the most appropriate platform for a certain data mining task and datasets with varying characteristics. Especially novice analysts experience difficulties to keep up with the latest technical developments. In this demo, we present the ASAP-DM framework. ASAP-DM is able to automatically select a well-performing analytic platform for a given data mining task via an intuitive web interface, thus especially supporting novice analysts. The take-aways for demo attendees are: (1) a good understanding of the challenges of various data mining workloads, dataset characteristics, and the effects on the selection of analytic platforms, (2) useful insights on how ASAP-DM internally works, and (3) how to benefit from ASAP-DM for exploratory data analysis.","PeriodicalId":312773,"journal":{"name":"33rd International Conference on Scientific and Statistical Database Management","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Selection of Analytic Platforms with ASAP-DM\",\"authors\":\"M. Fritz, Gang Shao, H. Schwarz\",\"doi\":\"10.1145/3468791.3468802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The plethora of available analytic platforms escalates the difficulty of selecting the most appropriate platform for a certain data mining task and datasets with varying characteristics. Especially novice analysts experience difficulties to keep up with the latest technical developments. In this demo, we present the ASAP-DM framework. ASAP-DM is able to automatically select a well-performing analytic platform for a given data mining task via an intuitive web interface, thus especially supporting novice analysts. The take-aways for demo attendees are: (1) a good understanding of the challenges of various data mining workloads, dataset characteristics, and the effects on the selection of analytic platforms, (2) useful insights on how ASAP-DM internally works, and (3) how to benefit from ASAP-DM for exploratory data analysis.\",\"PeriodicalId\":312773,\"journal\":{\"name\":\"33rd International Conference on Scientific and Statistical Database Management\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"33rd International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3468791.3468802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3468791.3468802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Selection of Analytic Platforms with ASAP-DM
The plethora of available analytic platforms escalates the difficulty of selecting the most appropriate platform for a certain data mining task and datasets with varying characteristics. Especially novice analysts experience difficulties to keep up with the latest technical developments. In this demo, we present the ASAP-DM framework. ASAP-DM is able to automatically select a well-performing analytic platform for a given data mining task via an intuitive web interface, thus especially supporting novice analysts. The take-aways for demo attendees are: (1) a good understanding of the challenges of various data mining workloads, dataset characteristics, and the effects on the selection of analytic platforms, (2) useful insights on how ASAP-DM internally works, and (3) how to benefit from ASAP-DM for exploratory data analysis.