{"title":"电纺双层复合膜去除饮用水中金属污染物的研究","authors":"N. Sultana, Dennis E. Daniels","doi":"10.11113/amst.v23n3.171","DOIUrl":null,"url":null,"abstract":"Using biodegradable polymer polycaprolactone (PCL) and zeolite, the present experiment was conducted with the aim of using biodegradable PCL and zeolite based composite membrane to remove silver in drinking water. After optimizing the electrospinning parameters, a double-layered PCL and PCL/zeolite electrospun composite membranes were manufactured. The membranes were then characterized using a scanning electron microscope (SEM) and an energy dispersive X-ray (EDX) and the filtration phenomenon was conducted by dispersing silver nanoparticles in water. After comparing the filtration results using an inductively coupled plasma optical emission spectrometry (ICP-OES), it was observed that the bi-layered membrane filtered 90% of silver present in the water. The present work shows that the new PCL/zeolite based double-layered membrane can be promising to remove contaminants in drinking water.","PeriodicalId":326334,"journal":{"name":"Journal of Applied Membrane Science & Technology","volume":"264 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrospun Bi-layered Composite Membrane for the Removal of Metallic Contaminants in Drinking Water\",\"authors\":\"N. Sultana, Dennis E. Daniels\",\"doi\":\"10.11113/amst.v23n3.171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using biodegradable polymer polycaprolactone (PCL) and zeolite, the present experiment was conducted with the aim of using biodegradable PCL and zeolite based composite membrane to remove silver in drinking water. After optimizing the electrospinning parameters, a double-layered PCL and PCL/zeolite electrospun composite membranes were manufactured. The membranes were then characterized using a scanning electron microscope (SEM) and an energy dispersive X-ray (EDX) and the filtration phenomenon was conducted by dispersing silver nanoparticles in water. After comparing the filtration results using an inductively coupled plasma optical emission spectrometry (ICP-OES), it was observed that the bi-layered membrane filtered 90% of silver present in the water. The present work shows that the new PCL/zeolite based double-layered membrane can be promising to remove contaminants in drinking water.\",\"PeriodicalId\":326334,\"journal\":{\"name\":\"Journal of Applied Membrane Science & Technology\",\"volume\":\"264 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Membrane Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/amst.v23n3.171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Membrane Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/amst.v23n3.171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrospun Bi-layered Composite Membrane for the Removal of Metallic Contaminants in Drinking Water
Using biodegradable polymer polycaprolactone (PCL) and zeolite, the present experiment was conducted with the aim of using biodegradable PCL and zeolite based composite membrane to remove silver in drinking water. After optimizing the electrospinning parameters, a double-layered PCL and PCL/zeolite electrospun composite membranes were manufactured. The membranes were then characterized using a scanning electron microscope (SEM) and an energy dispersive X-ray (EDX) and the filtration phenomenon was conducted by dispersing silver nanoparticles in water. After comparing the filtration results using an inductively coupled plasma optical emission spectrometry (ICP-OES), it was observed that the bi-layered membrane filtered 90% of silver present in the water. The present work shows that the new PCL/zeolite based double-layered membrane can be promising to remove contaminants in drinking water.