T. Aoyama, M. Fukuda, Y. Nara, S. Umisedo, N. Hamamoto, M. Tanjo, T. Nagayama
{"title":"十硼烷离子注入亚40nm栅极长pmosfet,可形成陡的超浅结和小的阈值电压波动","authors":"T. Aoyama, M. Fukuda, Y. Nara, S. Umisedo, N. Hamamoto, M. Tanjo, T. Nagayama","doi":"10.1109/IWJT.2005.203871","DOIUrl":null,"url":null,"abstract":"In this paper, the decaborane molecular ion implantation for formation of an ultra-shallow junction of sub-40-nm PMOSFETs is investigated, and its high-performance are demonstrated. B/sub 10/H/sub x//sup +/ implantation can form a shallow and steep USJ with low resistivity and can precisely control the beam without blow-up and energy contamination, compared with the B/sup +/ monomer implantation. PMOSFETs using B/sub 10/H/sub x//sup +/ implantation for source/drain extensions achieve 6-nm shorter Vth roll-off characteristic without degradation of I/sub on/-I/sub off/ characteristic. Therefore, CV/I values can be improved by over 10%. In addition, the precisely controllable and well-collimated beam results occur alongside the Vth fluctuation suppression. The average improvement of Vth fluctuations among extensive gate length (35 to 200 nm) is 14%.","PeriodicalId":307038,"journal":{"name":"Extended Abstracts of the Fifth International Workshop on Junction Technology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Decaborane ion implantation for sub-40-nm gate-length PMOSFETs to enable formation of steep ultra-shallow junction and small threshold voltage fluctuation\",\"authors\":\"T. Aoyama, M. Fukuda, Y. Nara, S. Umisedo, N. Hamamoto, M. Tanjo, T. Nagayama\",\"doi\":\"10.1109/IWJT.2005.203871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the decaborane molecular ion implantation for formation of an ultra-shallow junction of sub-40-nm PMOSFETs is investigated, and its high-performance are demonstrated. B/sub 10/H/sub x//sup +/ implantation can form a shallow and steep USJ with low resistivity and can precisely control the beam without blow-up and energy contamination, compared with the B/sup +/ monomer implantation. PMOSFETs using B/sub 10/H/sub x//sup +/ implantation for source/drain extensions achieve 6-nm shorter Vth roll-off characteristic without degradation of I/sub on/-I/sub off/ characteristic. Therefore, CV/I values can be improved by over 10%. In addition, the precisely controllable and well-collimated beam results occur alongside the Vth fluctuation suppression. The average improvement of Vth fluctuations among extensive gate length (35 to 200 nm) is 14%.\",\"PeriodicalId\":307038,\"journal\":{\"name\":\"Extended Abstracts of the Fifth International Workshop on Junction Technology\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extended Abstracts of the Fifth International Workshop on Junction Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWJT.2005.203871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extended Abstracts of the Fifth International Workshop on Junction Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWJT.2005.203871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decaborane ion implantation for sub-40-nm gate-length PMOSFETs to enable formation of steep ultra-shallow junction and small threshold voltage fluctuation
In this paper, the decaborane molecular ion implantation for formation of an ultra-shallow junction of sub-40-nm PMOSFETs is investigated, and its high-performance are demonstrated. B/sub 10/H/sub x//sup +/ implantation can form a shallow and steep USJ with low resistivity and can precisely control the beam without blow-up and energy contamination, compared with the B/sup +/ monomer implantation. PMOSFETs using B/sub 10/H/sub x//sup +/ implantation for source/drain extensions achieve 6-nm shorter Vth roll-off characteristic without degradation of I/sub on/-I/sub off/ characteristic. Therefore, CV/I values can be improved by over 10%. In addition, the precisely controllable and well-collimated beam results occur alongside the Vth fluctuation suppression. The average improvement of Vth fluctuations among extensive gate length (35 to 200 nm) is 14%.