模板优化技术应用于现代架构的显式ODE方法

C. Alappat, Johannes Seiferth, G. Hager, Matthias Korch, T. Rauber, G. Wellein
{"title":"模板优化技术应用于现代架构的显式ODE方法","authors":"C. Alappat, Johannes Seiferth, G. Hager, Matthias Korch, T. Rauber, G. Wellein","doi":"10.1109/CGO51591.2021.9370316","DOIUrl":null,"url":null,"abstract":"The landscape of multi-core architectures is growing more complex and diverse. Optimal application performance tuning parameters can vary widely across CPUs, and finding them in a possibly multidimensional parameter search space can be time consuming, expensive and potentially infeasible. In this work, we introduce YaskSite, a tool capable of tackling these challenges for stencil computations. YaskSite is built upon Intel's YASK framework. It combines YASK's flexibility to deal with different target architectures with the Execution-Cache-Memory performance model, which enables identifying optimal performance parameters analytically without the need to run the code. Further we show that YaskSite's features can be exploited by external tuning frameworks to reliably select the most efficient kernel(s) for the application at hand. To demonstrate this, we integrate YaskSite into Offsite, an offline tuner for explicit ordinary differential equation methods, and show that the generated performance predictions are reliable and accurate, leading to considerable performance gains at minimal code generation time and autotuning costs on the latest Intel Cascade Lake and AMD Rome CPUs.","PeriodicalId":275062,"journal":{"name":"2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"YaskSite: Stencil Optimization Techniques Applied to Explicit ODE Methods on Modern Architectures\",\"authors\":\"C. Alappat, Johannes Seiferth, G. Hager, Matthias Korch, T. Rauber, G. Wellein\",\"doi\":\"10.1109/CGO51591.2021.9370316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The landscape of multi-core architectures is growing more complex and diverse. Optimal application performance tuning parameters can vary widely across CPUs, and finding them in a possibly multidimensional parameter search space can be time consuming, expensive and potentially infeasible. In this work, we introduce YaskSite, a tool capable of tackling these challenges for stencil computations. YaskSite is built upon Intel's YASK framework. It combines YASK's flexibility to deal with different target architectures with the Execution-Cache-Memory performance model, which enables identifying optimal performance parameters analytically without the need to run the code. Further we show that YaskSite's features can be exploited by external tuning frameworks to reliably select the most efficient kernel(s) for the application at hand. To demonstrate this, we integrate YaskSite into Offsite, an offline tuner for explicit ordinary differential equation methods, and show that the generated performance predictions are reliable and accurate, leading to considerable performance gains at minimal code generation time and autotuning costs on the latest Intel Cascade Lake and AMD Rome CPUs.\",\"PeriodicalId\":275062,\"journal\":{\"name\":\"2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGO51591.2021.9370316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGO51591.2021.9370316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多核架构的前景正变得越来越复杂和多样化。最优应用程序性能调优参数在不同的cpu之间差异很大,在可能是多维参数的搜索空间中查找它们可能非常耗时、昂贵,而且可能不可行。在这项工作中,我们介绍了YaskSite,一个能够解决这些挑战的模板计算工具。YaskSite建立在英特尔的YASK框架之上。它将YASK的灵活性与执行-缓存-内存性能模型相结合,以处理不同的目标体系结构,这使得无需运行代码即可解析地识别最佳性能参数。此外,我们还展示了外部调优框架可以利用YaskSite的特性,为手头的应用程序可靠地选择最有效的内核。为了证明这一点,我们将YaskSite集成到Offsite中,Offsite是一个用于显式常微分方程方法的离线调谐器,并显示生成的性能预测是可靠和准确的,在最新的Intel Cascade Lake和AMD Rome cpu上以最小的代码生成时间和自动调谐成本获得了可观的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
YaskSite: Stencil Optimization Techniques Applied to Explicit ODE Methods on Modern Architectures
The landscape of multi-core architectures is growing more complex and diverse. Optimal application performance tuning parameters can vary widely across CPUs, and finding them in a possibly multidimensional parameter search space can be time consuming, expensive and potentially infeasible. In this work, we introduce YaskSite, a tool capable of tackling these challenges for stencil computations. YaskSite is built upon Intel's YASK framework. It combines YASK's flexibility to deal with different target architectures with the Execution-Cache-Memory performance model, which enables identifying optimal performance parameters analytically without the need to run the code. Further we show that YaskSite's features can be exploited by external tuning frameworks to reliably select the most efficient kernel(s) for the application at hand. To demonstrate this, we integrate YaskSite into Offsite, an offline tuner for explicit ordinary differential equation methods, and show that the generated performance predictions are reliable and accurate, leading to considerable performance gains at minimal code generation time and autotuning costs on the latest Intel Cascade Lake and AMD Rome CPUs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信