零的重要性

T. Recio, J. Sendra, Carlos Villarino
{"title":"零的重要性","authors":"T. Recio, J. Sendra, Carlos Villarino","doi":"10.1145/3208976.3208981","DOIUrl":null,"url":null,"abstract":"We present a deterministic algorithm for deciding if a polynomial ideal, with coefficients in an algebraically closed field K of characteristic zero, of which we know just some very limited data, namely: the number n of variables, and some upper bound for the geometric degree of its zero set in Kn, is or not the zero ideal. The algorithm performs just a finite number of decisions to check wheather a point is or not in the zero set of the ideal. Moreover, we extend this technique to test, in the same fashion, if the elimination of some variables in the given ideal yields or not the zero ideal. Finally, the role of this technique in the context of automated theorem proving of elementary geometry statements, is presented, with references to recent documents describing the excellent performance of the already existing prototype version, implemented in GeoGebra.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Importance of Being Zero\",\"authors\":\"T. Recio, J. Sendra, Carlos Villarino\",\"doi\":\"10.1145/3208976.3208981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a deterministic algorithm for deciding if a polynomial ideal, with coefficients in an algebraically closed field K of characteristic zero, of which we know just some very limited data, namely: the number n of variables, and some upper bound for the geometric degree of its zero set in Kn, is or not the zero ideal. The algorithm performs just a finite number of decisions to check wheather a point is or not in the zero set of the ideal. Moreover, we extend this technique to test, in the same fashion, if the elimination of some variables in the given ideal yields or not the zero ideal. Finally, the role of this technique in the context of automated theorem proving of elementary geometry statements, is presented, with references to recent documents describing the excellent performance of the already existing prototype version, implemented in GeoGebra.\",\"PeriodicalId\":105762,\"journal\":{\"name\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3208976.3208981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3208981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种确定多项式理想是否是零理想的确定性算法,该多项式理想的系数在代数闭域K中特征为零,我们只知道一些非常有限的数据,即:变量的数目n,以及它的零集在Kn中的几何次的上界。该算法只执行有限次决策来检查一个点是否在理想的零集中。此外,我们以同样的方式将该技术扩展到测试是否在给定理想中消除某些变量产生或不是零理想。最后,介绍了该技术在初等几何语句的自动定理证明中的作用,并参考了最近的文档,描述了在GeoGebra中实现的现有原型版本的优异性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Importance of Being Zero
We present a deterministic algorithm for deciding if a polynomial ideal, with coefficients in an algebraically closed field K of characteristic zero, of which we know just some very limited data, namely: the number n of variables, and some upper bound for the geometric degree of its zero set in Kn, is or not the zero ideal. The algorithm performs just a finite number of decisions to check wheather a point is or not in the zero set of the ideal. Moreover, we extend this technique to test, in the same fashion, if the elimination of some variables in the given ideal yields or not the zero ideal. Finally, the role of this technique in the context of automated theorem proving of elementary geometry statements, is presented, with references to recent documents describing the excellent performance of the already existing prototype version, implemented in GeoGebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信