人工智能数据集标注的发展概况

Bochao Ao, Bingbing Fan
{"title":"人工智能数据集标注的发展概况","authors":"Bochao Ao, Bingbing Fan","doi":"10.1109/ISAIAM55748.2022.00041","DOIUrl":null,"url":null,"abstract":"With the continuous development of artificial intelligence, various deep learning algorithms need a lot of training of annotated data, and how to improve the efficiency of data annotation has become a research hotspot. This paper analyzes the development history of AI data set annotation, summarizes the general framework of AI data set annotation, summarizes three semi-automatic or automatic AI data set annotation methods, and compares and analyzes the advantages and disadvantages of the three methods.","PeriodicalId":382895,"journal":{"name":"2022 2nd International Symposium on Artificial Intelligence and its Application on Media (ISAIAM)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overview of the development of AI dataset annotation\",\"authors\":\"Bochao Ao, Bingbing Fan\",\"doi\":\"10.1109/ISAIAM55748.2022.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the continuous development of artificial intelligence, various deep learning algorithms need a lot of training of annotated data, and how to improve the efficiency of data annotation has become a research hotspot. This paper analyzes the development history of AI data set annotation, summarizes the general framework of AI data set annotation, summarizes three semi-automatic or automatic AI data set annotation methods, and compares and analyzes the advantages and disadvantages of the three methods.\",\"PeriodicalId\":382895,\"journal\":{\"name\":\"2022 2nd International Symposium on Artificial Intelligence and its Application on Media (ISAIAM)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Symposium on Artificial Intelligence and its Application on Media (ISAIAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAIAM55748.2022.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Symposium on Artificial Intelligence and its Application on Media (ISAIAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAIAM55748.2022.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着人工智能的不断发展,各种深度学习算法都需要对标注数据进行大量的训练,如何提高数据标注的效率成为研究热点。本文分析了AI数据集标注的发展历史,总结了AI数据集标注的一般框架,总结了三种半自动或自动的AI数据集标注方法,并对三种方法的优缺点进行了比较分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overview of the development of AI dataset annotation
With the continuous development of artificial intelligence, various deep learning algorithms need a lot of training of annotated data, and how to improve the efficiency of data annotation has become a research hotspot. This paper analyzes the development history of AI data set annotation, summarizes the general framework of AI data set annotation, summarizes three semi-automatic or automatic AI data set annotation methods, and compares and analyzes the advantages and disadvantages of the three methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信