移动设备应用程序、蓝牙和Wi-Fi使用数据作为行为生物特征

T. Neal, D. Woodard, A. Striegel
{"title":"移动设备应用程序、蓝牙和Wi-Fi使用数据作为行为生物特征","authors":"T. Neal, D. Woodard, A. Striegel","doi":"10.1109/BTAS.2015.7358777","DOIUrl":null,"url":null,"abstract":"Patterns in the use of mobile devices have the potential to be used as a behavioral biometric for identification of the device user. We explore the distinctiveness and permanence of application, Bluetooth, and Wi-Fi mobile device usage data. Our database consists of data from two hundred mobile phone users collected over a 19-month span. To our knowledge, this is one of the largest databases of its kind. Results of over 500 experiments indicate that user identification rates averaging 80%, 77%, 93%, and 85% are achievable when using application, Bluetooth, Wi-Fi, and the combination of these three types of behavioral features, respectively.","PeriodicalId":404972,"journal":{"name":"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Mobile device application, Bluetooth, and Wi-Fi usage data as behavioral biometric traits\",\"authors\":\"T. Neal, D. Woodard, A. Striegel\",\"doi\":\"10.1109/BTAS.2015.7358777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Patterns in the use of mobile devices have the potential to be used as a behavioral biometric for identification of the device user. We explore the distinctiveness and permanence of application, Bluetooth, and Wi-Fi mobile device usage data. Our database consists of data from two hundred mobile phone users collected over a 19-month span. To our knowledge, this is one of the largest databases of its kind. Results of over 500 experiments indicate that user identification rates averaging 80%, 77%, 93%, and 85% are achievable when using application, Bluetooth, Wi-Fi, and the combination of these three types of behavioral features, respectively.\",\"PeriodicalId\":404972,\"journal\":{\"name\":\"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2015.7358777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2015.7358777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

使用移动设备的模式具有作为识别设备用户的行为生物特征的潜力。我们探索应用程序、蓝牙和Wi-Fi移动设备使用数据的独特性和持久性。我们的数据库由200个移动电话用户在19个月内收集的数据组成。据我们所知,这是同类数据库中最大的数据库之一。500多个实验结果表明,应用程序、蓝牙、Wi-Fi以及这三种行为特征结合使用时,用户识别率分别达到平均80%、77%、93%和85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobile device application, Bluetooth, and Wi-Fi usage data as behavioral biometric traits
Patterns in the use of mobile devices have the potential to be used as a behavioral biometric for identification of the device user. We explore the distinctiveness and permanence of application, Bluetooth, and Wi-Fi mobile device usage data. Our database consists of data from two hundred mobile phone users collected over a 19-month span. To our knowledge, this is one of the largest databases of its kind. Results of over 500 experiments indicate that user identification rates averaging 80%, 77%, 93%, and 85% are achievable when using application, Bluetooth, Wi-Fi, and the combination of these three types of behavioral features, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信