基于动态重构的FPGA高效神经网络加速器

Yang Yang, Chao Wang, Xuehai Zhou
{"title":"基于动态重构的FPGA高效神经网络加速器","authors":"Yang Yang, Chao Wang, Xuehai Zhou","doi":"10.1145/3349567.3351727","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a high efficient neural network accelerator on FPGA by using dynamic reconfiguration, named Drama. Firstly, we design a high-efficient hardware architecture and provide a hardware template that can generate optimal configuration for each layer. Then, to explore the key features of the neural network models, we employ a layer-clustering algorithm to classify different layers. After that, we transform CNN models into task sequences. To accomplish the execution of the sequence, the FPGA-based hardware is able to switch the accelerator with dynamic reconfiguration and offload the related tasks to the accelerator at runtime. Preliminary results on the FPGA platform demonstrate that Drama is able to improve the performance significantly due to the dynamic reconfiguration techniques.","PeriodicalId":194982,"journal":{"name":"2019 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Work-in-Progress: Drama: A High Efficient Neural Network Accelerator on FPGA using Dynamic Reconfiguration\",\"authors\":\"Yang Yang, Chao Wang, Xuehai Zhou\",\"doi\":\"10.1145/3349567.3351727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a high efficient neural network accelerator on FPGA by using dynamic reconfiguration, named Drama. Firstly, we design a high-efficient hardware architecture and provide a hardware template that can generate optimal configuration for each layer. Then, to explore the key features of the neural network models, we employ a layer-clustering algorithm to classify different layers. After that, we transform CNN models into task sequences. To accomplish the execution of the sequence, the FPGA-based hardware is able to switch the accelerator with dynamic reconfiguration and offload the related tasks to the accelerator at runtime. Preliminary results on the FPGA platform demonstrate that Drama is able to improve the performance significantly due to the dynamic reconfiguration techniques.\",\"PeriodicalId\":194982,\"journal\":{\"name\":\"2019 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3349567.3351727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349567.3351727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于FPGA的基于动态重构的高效神经网络加速器Drama。首先,我们设计了一个高效的硬件架构,并提供了一个硬件模板,可以为每一层生成最优配置。然后,为了探索神经网络模型的关键特征,我们采用一种层聚类算法对不同的层进行分类。之后,我们将CNN模型转换为任务序列。为了完成序列的执行,基于fpga的硬件能够通过动态重新配置切换加速器,并在运行时将相关任务卸载到加速器上。在FPGA平台上的初步结果表明,由于采用了动态重构技术,Drama能够显著提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Work-in-Progress: Drama: A High Efficient Neural Network Accelerator on FPGA using Dynamic Reconfiguration
In this paper, we propose a high efficient neural network accelerator on FPGA by using dynamic reconfiguration, named Drama. Firstly, we design a high-efficient hardware architecture and provide a hardware template that can generate optimal configuration for each layer. Then, to explore the key features of the neural network models, we employ a layer-clustering algorithm to classify different layers. After that, we transform CNN models into task sequences. To accomplish the execution of the sequence, the FPGA-based hardware is able to switch the accelerator with dynamic reconfiguration and offload the related tasks to the accelerator at runtime. Preliminary results on the FPGA platform demonstrate that Drama is able to improve the performance significantly due to the dynamic reconfiguration techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信