基于自适应波束形成的安全分速多址资源分配

Tenghao Cai, Jia Zhang, Shihao Yan, Lili Meng, Jiande Sun, N. Al-Dhahir
{"title":"基于自适应波束形成的安全分速多址资源分配","authors":"Tenghao Cai, Jia Zhang, Shihao Yan, Lili Meng, Jiande Sun, N. Al-Dhahir","doi":"10.1109/ICCWorkshops50388.2021.9473880","DOIUrl":null,"url":null,"abstract":"Rate splitting multiple access (RSMA) is promising to achieve high spectral efficiency with a higher flexibility relative to non-orthogonal multiple access (NOMA) and orthogonal multiple access (OMA). In this paper, a novel RSMA-based secure transmission scheme with artificial noise (AN) and an adaptive beamforming is developed with the aim of maximizing the secrecy sum rate (SSR) of the considered system subject to specific constraints. The joint optimization of the power allocation between useful messages and AN signals, rate splitting between the two legitimate receivers, and the two mastering parameters of the beamforming design is tackled. To solve such a non-convex problem, we first analytically reveal some properties of the solution and then focus on an asymptotic scenario with a sufficiently large number of transmit antennas to derive closed-form expressions for the optimal power allocation coefficients. This enables us to develop an efficient method to identify the optimal rate splitting and beamforming parameters. Our examinations demonstrate that the proposed RSMA-based scheme outperforms two benchmark schemes in terms of achieving a higher SSR and the achievable performance gain is exceptional when the number of transmit antennas is small.","PeriodicalId":127186,"journal":{"name":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Resource Allocation for Secure Rate-Splitting Multiple Access with Adaptive Beamforming\",\"authors\":\"Tenghao Cai, Jia Zhang, Shihao Yan, Lili Meng, Jiande Sun, N. Al-Dhahir\",\"doi\":\"10.1109/ICCWorkshops50388.2021.9473880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rate splitting multiple access (RSMA) is promising to achieve high spectral efficiency with a higher flexibility relative to non-orthogonal multiple access (NOMA) and orthogonal multiple access (OMA). In this paper, a novel RSMA-based secure transmission scheme with artificial noise (AN) and an adaptive beamforming is developed with the aim of maximizing the secrecy sum rate (SSR) of the considered system subject to specific constraints. The joint optimization of the power allocation between useful messages and AN signals, rate splitting between the two legitimate receivers, and the two mastering parameters of the beamforming design is tackled. To solve such a non-convex problem, we first analytically reveal some properties of the solution and then focus on an asymptotic scenario with a sufficiently large number of transmit antennas to derive closed-form expressions for the optimal power allocation coefficients. This enables us to develop an efficient method to identify the optimal rate splitting and beamforming parameters. Our examinations demonstrate that the proposed RSMA-based scheme outperforms two benchmark schemes in terms of achieving a higher SSR and the achievable performance gain is exceptional when the number of transmit antennas is small.\",\"PeriodicalId\":127186,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWorkshops50388.2021.9473880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWorkshops50388.2021.9473880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

相对于非正交多址(NOMA)和正交多址(OMA), RSMA有望实现更高的频谱效率和更高的灵活性。本文提出了一种新的基于rsma的安全传输方案,该方案采用人工噪声和自适应波束形成,目的是在特定约束条件下使系统的保密和率(SSR)最大化。讨论了有效报文和AN信号之间的功率分配、两个合法接收机之间的速率分割以及波束形成设计的两个主控参数的联合优化问题。为了解决这样一个非凸问题,我们首先解析地揭示了解的一些性质,然后重点关注一个具有足够大的发射天线数量的渐近场景,以导出最优功率分配系数的封闭形式表达式。这使我们能够开发出一种有效的方法来确定最佳的速率分裂和波束形成参数。我们的研究表明,所提出的基于rsma的方案在实现更高的SSR方面优于两种基准方案,并且当发射天线数量较少时,可实现的性能增益是例外的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resource Allocation for Secure Rate-Splitting Multiple Access with Adaptive Beamforming
Rate splitting multiple access (RSMA) is promising to achieve high spectral efficiency with a higher flexibility relative to non-orthogonal multiple access (NOMA) and orthogonal multiple access (OMA). In this paper, a novel RSMA-based secure transmission scheme with artificial noise (AN) and an adaptive beamforming is developed with the aim of maximizing the secrecy sum rate (SSR) of the considered system subject to specific constraints. The joint optimization of the power allocation between useful messages and AN signals, rate splitting between the two legitimate receivers, and the two mastering parameters of the beamforming design is tackled. To solve such a non-convex problem, we first analytically reveal some properties of the solution and then focus on an asymptotic scenario with a sufficiently large number of transmit antennas to derive closed-form expressions for the optimal power allocation coefficients. This enables us to develop an efficient method to identify the optimal rate splitting and beamforming parameters. Our examinations demonstrate that the proposed RSMA-based scheme outperforms two benchmark schemes in terms of achieving a higher SSR and the achievable performance gain is exceptional when the number of transmit antennas is small.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信