基于Ferguson样条粒子群算法的机器人路径规划

M. Saska, M. Macas, L. Preucil, L. Lhotská
{"title":"基于Ferguson样条粒子群算法的机器人路径规划","authors":"M. Saska, M. Macas, L. Preucil, L. Lhotská","doi":"10.1109/ETFA.2006.355416","DOIUrl":null,"url":null,"abstract":"Robot path planning problem is one of most important task mobile robots. This paper proposes an original approach using a path description by string of cubic splines. Such path is easy executable and natural for car-like robot. Furthermore, it is possible to ensure smooth derivation in connections of particular splines. In this case, the path planning is equivalent to optimization of parameters of splines. An evolutionary technique called particle swarm optimization (PSO) was used hereunder due to its relatively fast convergence and global search character. Various settings of PSO parameters were tested and the best setting was compared to two classical mobile robot path planning algorithms.","PeriodicalId":431393,"journal":{"name":"2006 IEEE Conference on Emerging Technologies and Factory Automation","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"140","resultStr":"{\"title\":\"Robot Path Planning using Particle Swarm Optimization of Ferguson Splines\",\"authors\":\"M. Saska, M. Macas, L. Preucil, L. Lhotská\",\"doi\":\"10.1109/ETFA.2006.355416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robot path planning problem is one of most important task mobile robots. This paper proposes an original approach using a path description by string of cubic splines. Such path is easy executable and natural for car-like robot. Furthermore, it is possible to ensure smooth derivation in connections of particular splines. In this case, the path planning is equivalent to optimization of parameters of splines. An evolutionary technique called particle swarm optimization (PSO) was used hereunder due to its relatively fast convergence and global search character. Various settings of PSO parameters were tested and the best setting was compared to two classical mobile robot path planning algorithms.\",\"PeriodicalId\":431393,\"journal\":{\"name\":\"2006 IEEE Conference on Emerging Technologies and Factory Automation\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"140\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Conference on Emerging Technologies and Factory Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2006.355416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Emerging Technologies and Factory Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2006.355416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 140

摘要

机器人路径规划问题是移动机器人最重要的任务之一。本文提出了一种新颖的三次样条串路径描述方法。这种路径易于执行,对于类车机器人来说是自然的。此外,还可以确保在特定样条的连接中推导平滑。在这种情况下,路径规划相当于样条参数的优化。由于粒子群优化算法具有快速收敛和全局搜索的特点,本文采用了粒子群优化算法。测试了PSO参数的各种设置,并将最佳设置与两种经典移动机器人路径规划算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robot Path Planning using Particle Swarm Optimization of Ferguson Splines
Robot path planning problem is one of most important task mobile robots. This paper proposes an original approach using a path description by string of cubic splines. Such path is easy executable and natural for car-like robot. Furthermore, it is possible to ensure smooth derivation in connections of particular splines. In this case, the path planning is equivalent to optimization of parameters of splines. An evolutionary technique called particle swarm optimization (PSO) was used hereunder due to its relatively fast convergence and global search character. Various settings of PSO parameters were tested and the best setting was compared to two classical mobile robot path planning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信