由接收方提供的数据分析程序定制的匿名化

Wakana Maeda, Yuji Yamaoka
{"title":"由接收方提供的数据分析程序定制的匿名化","authors":"Wakana Maeda, Yuji Yamaoka","doi":"10.1145/3292006.3302380","DOIUrl":null,"url":null,"abstract":"Anonymization is a method used in privacy-preserving data publishing. Previous studies show that anonymization based on the request of a data recipient, the priority of attributes, helps to maintain data utility. However, it is difficult for recipients to generate requests because they can not know which attribute important without data analysis. To address this issue, we propose a framework for performing custom-made anonymization by data analysis program provided by recipient. This enables the recipient to generate a request after creating a program and performing an indirect analysis of an original dataset by the program. Moreover, we describe an inference attack model for this framework and propose a secure method for restraining such an attack.","PeriodicalId":246233,"journal":{"name":"Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy","volume":"119 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Custom-made Anonymization by Data Analysis Program Provided by Recipient\",\"authors\":\"Wakana Maeda, Yuji Yamaoka\",\"doi\":\"10.1145/3292006.3302380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anonymization is a method used in privacy-preserving data publishing. Previous studies show that anonymization based on the request of a data recipient, the priority of attributes, helps to maintain data utility. However, it is difficult for recipients to generate requests because they can not know which attribute important without data analysis. To address this issue, we propose a framework for performing custom-made anonymization by data analysis program provided by recipient. This enables the recipient to generate a request after creating a program and performing an indirect analysis of an original dataset by the program. Moreover, we describe an inference attack model for this framework and propose a secure method for restraining such an attack.\",\"PeriodicalId\":246233,\"journal\":{\"name\":\"Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy\",\"volume\":\"119 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3292006.3302380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292006.3302380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

匿名化是一种用于保护隐私的数据发布方法。以往的研究表明,基于数据接收者的请求、属性优先级的匿名化有助于保持数据的实用性。但是,如果没有数据分析,接收方无法知道哪个属性是重要的,因此很难生成请求。为了解决这个问题,我们提出了一个由接收方提供的数据分析程序执行定制匿名化的框架。这使接收方能够在创建程序并由程序对原始数据集执行间接分析后生成请求。此外,我们还描述了该框架的推理攻击模型,并提出了一种安全的方法来抑制这种攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Custom-made Anonymization by Data Analysis Program Provided by Recipient
Anonymization is a method used in privacy-preserving data publishing. Previous studies show that anonymization based on the request of a data recipient, the priority of attributes, helps to maintain data utility. However, it is difficult for recipients to generate requests because they can not know which attribute important without data analysis. To address this issue, we propose a framework for performing custom-made anonymization by data analysis program provided by recipient. This enables the recipient to generate a request after creating a program and performing an indirect analysis of an original dataset by the program. Moreover, we describe an inference attack model for this framework and propose a secure method for restraining such an attack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信