基于因果机器学习模型的着陆参数对跑道占用时间的因果影响

Zhi Jun Lim, S. Goh, Imen Dhief, S. Alam
{"title":"基于因果机器学习模型的着陆参数对跑道占用时间的因果影响","authors":"Zhi Jun Lim, S. Goh, Imen Dhief, S. Alam","doi":"10.1109/SSCI47803.2020.9308243","DOIUrl":null,"url":null,"abstract":"Limited runway capacity is a common problem faced by most airports worldwide. The two important factors that affect runway throughput are the wake-vortex separation and Runway Occupancy Time (ROT). Therefore, to improve runway throughput, Wake Turbulence Re-categorisation program (RECAT) was introduced to reduce the minimum separation distance required between successive aircraft on final approach. As a result, the constraining impact of ROT on runway throughput has now become significant. The objective of this paper is to identify data-driven intervention to reduce the ROT of landing aircraft. Specifically, we propose a data-driven approach to estimate the causal effect of landing parameters on ROT. We propose categorisation of each landing parameter into groups using Gaussian process models and employ Generalised Random Forest (GRF) to estimate the average treatment effect and the standard deviation of each landing parameters. Experimental results show that a few procedural changes to current landing procedure may reduce ROT. The results establish that slowing down the aircraft speed in the final approach phase leads to shorter ROT. In the final approach phase, ROTs of aircraft which are at least 10 knots slower than the average aircraft speed are on an average 2.63 seconds shorter. Furthermore, aircraft that are at least 10 knots faster than the average aircraft have on average 4 seconds longer ROTs. The second finding of this work is that flexible glide-slope angles should be introduced for the different aircraft types to achieve better ROT performance. Therefore, our findings also validate the industry need for Ground-Based Augmented System landing system which provides landing guidance with flexible glide-slopes.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Causal Effects of Landing Parameters on Runway Occupancy Time using Causal Machine Learning Models\",\"authors\":\"Zhi Jun Lim, S. Goh, Imen Dhief, S. Alam\",\"doi\":\"10.1109/SSCI47803.2020.9308243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Limited runway capacity is a common problem faced by most airports worldwide. The two important factors that affect runway throughput are the wake-vortex separation and Runway Occupancy Time (ROT). Therefore, to improve runway throughput, Wake Turbulence Re-categorisation program (RECAT) was introduced to reduce the minimum separation distance required between successive aircraft on final approach. As a result, the constraining impact of ROT on runway throughput has now become significant. The objective of this paper is to identify data-driven intervention to reduce the ROT of landing aircraft. Specifically, we propose a data-driven approach to estimate the causal effect of landing parameters on ROT. We propose categorisation of each landing parameter into groups using Gaussian process models and employ Generalised Random Forest (GRF) to estimate the average treatment effect and the standard deviation of each landing parameters. Experimental results show that a few procedural changes to current landing procedure may reduce ROT. The results establish that slowing down the aircraft speed in the final approach phase leads to shorter ROT. In the final approach phase, ROTs of aircraft which are at least 10 knots slower than the average aircraft speed are on an average 2.63 seconds shorter. Furthermore, aircraft that are at least 10 knots faster than the average aircraft have on average 4 seconds longer ROTs. The second finding of this work is that flexible glide-slope angles should be introduced for the different aircraft types to achieve better ROT performance. Therefore, our findings also validate the industry need for Ground-Based Augmented System landing system which provides landing guidance with flexible glide-slopes.\",\"PeriodicalId\":413489,\"journal\":{\"name\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI47803.2020.9308243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

跑道容量有限是世界上大多数机场面临的共同问题。影响跑道吞吐量的两个重要因素是尾流-旋涡分离和跑道占用时间。因此,为了提高跑道吞吐量,引入了尾流湍流重新分类程序(RECAT),以减少最后进近时连续飞机之间所需的最小分离距离。因此,跑道老化对跑道吞吐量的限制影响现已变得显著。本文的目标是识别数据驱动的干预措施,以降低着陆飞机的ROT。具体来说,我们提出了一种数据驱动的方法来估计着陆参数对ROT的因果影响。我们建议使用高斯过程模型将每个着陆参数分类成组,并使用广义随机森林(GRF)来估计每个着陆参数的平均处理效果和标准差。实验结果表明,对当前着陆程序进行一些程序性的改变可以减少ROT。结果表明,在最后进近阶段减慢飞机速度可以缩短ROT。在最后进近阶段,比飞机平均速度慢至少10节的飞机的ROT平均缩短2.63秒。此外,速度比一般飞机快至少10节的飞机,其rot平均要长4秒。本研究的第二个发现是,应针对不同的飞机类型引入灵活的滑坡角,以获得更好的ROT性能。因此,我们的研究结果也验证了行业对陆基增强系统着陆系统的需求,该着陆系统提供了灵活的滑翔斜坡着陆制导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Causal Effects of Landing Parameters on Runway Occupancy Time using Causal Machine Learning Models
Limited runway capacity is a common problem faced by most airports worldwide. The two important factors that affect runway throughput are the wake-vortex separation and Runway Occupancy Time (ROT). Therefore, to improve runway throughput, Wake Turbulence Re-categorisation program (RECAT) was introduced to reduce the minimum separation distance required between successive aircraft on final approach. As a result, the constraining impact of ROT on runway throughput has now become significant. The objective of this paper is to identify data-driven intervention to reduce the ROT of landing aircraft. Specifically, we propose a data-driven approach to estimate the causal effect of landing parameters on ROT. We propose categorisation of each landing parameter into groups using Gaussian process models and employ Generalised Random Forest (GRF) to estimate the average treatment effect and the standard deviation of each landing parameters. Experimental results show that a few procedural changes to current landing procedure may reduce ROT. The results establish that slowing down the aircraft speed in the final approach phase leads to shorter ROT. In the final approach phase, ROTs of aircraft which are at least 10 knots slower than the average aircraft speed are on an average 2.63 seconds shorter. Furthermore, aircraft that are at least 10 knots faster than the average aircraft have on average 4 seconds longer ROTs. The second finding of this work is that flexible glide-slope angles should be introduced for the different aircraft types to achieve better ROT performance. Therefore, our findings also validate the industry need for Ground-Based Augmented System landing system which provides landing guidance with flexible glide-slopes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信