用于监控车辆盲点的立体全景视觉

Leanne Matuszyk, A. Zelinsky, L. Nilsson, M. Rilbe
{"title":"用于监控车辆盲点的立体全景视觉","authors":"Leanne Matuszyk, A. Zelinsky, L. Nilsson, M. Rilbe","doi":"10.1109/IVS.2004.1336351","DOIUrl":null,"url":null,"abstract":"This paper presents a stereo panoramic sensor as part of a driver assistance system to monitor driver blind-spots around vehicles. With our system we have generated panoramic disparity maps to reliably estimate range to objects in the surrounding environment. It was also proven that it is possible to apply the /spl nu/-disparity algorithm to panoramic images to successfully segment obstacles, even in the case of extremely noisy data. The stereo system has been evaluated using ground truth data, together with extensive field experiments.","PeriodicalId":296386,"journal":{"name":"IEEE Intelligent Vehicles Symposium, 2004","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Stereo panoramic vision for monitoring vehicle blind-spots\",\"authors\":\"Leanne Matuszyk, A. Zelinsky, L. Nilsson, M. Rilbe\",\"doi\":\"10.1109/IVS.2004.1336351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a stereo panoramic sensor as part of a driver assistance system to monitor driver blind-spots around vehicles. With our system we have generated panoramic disparity maps to reliably estimate range to objects in the surrounding environment. It was also proven that it is possible to apply the /spl nu/-disparity algorithm to panoramic images to successfully segment obstacles, even in the case of extremely noisy data. The stereo system has been evaluated using ground truth data, together with extensive field experiments.\",\"PeriodicalId\":296386,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2004.1336351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2004.1336351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

本文提出了一种立体全景传感器作为驾驶员辅助系统的一部分,用于监测车辆周围的驾驶员盲点。利用我们的系统,我们已经生成了全景视差图,以可靠地估计周围环境中物体的距离。研究还证明,即使在数据噪声极大的情况下,也可以将/spl nu/-视差算法应用于全景图像,成功分割障碍物。利用地面真实数据和广泛的实地试验对立体系统进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stereo panoramic vision for monitoring vehicle blind-spots
This paper presents a stereo panoramic sensor as part of a driver assistance system to monitor driver blind-spots around vehicles. With our system we have generated panoramic disparity maps to reliably estimate range to objects in the surrounding environment. It was also proven that it is possible to apply the /spl nu/-disparity algorithm to panoramic images to successfully segment obstacles, even in the case of extremely noisy data. The stereo system has been evaluated using ground truth data, together with extensive field experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信