Soman Kp, Loganathan R, Vijaya Ms, Ajay V, Shivsubramani K
{"title":"快速单次多类近端支持向量机与感知","authors":"Soman Kp, Loganathan R, Vijaya Ms, Ajay V, Shivsubramani K","doi":"10.1109/ICCTA.2007.60","DOIUrl":null,"url":null,"abstract":"Recently Sandor Szedmak and John Shawe-Taylor showed that multiclass support vector machines can be implemented with single class complexity. In this paper we show that computational complexity of their algorithm can be further reduced by modelling the problem as a multiclass proximal support vector machines. The new formulation requires only a linear equation solver. The paper then discusses the multiclass transformation of iterative single data algorithm. This method is faster than the first method. The two algorithm are so much simple that SVM training and testing of huge datasets can be implemented even in a spreadsheet","PeriodicalId":308247,"journal":{"name":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Fast Single-Shot Multiclass Proximal Support Vector Machines and Perceptions\",\"authors\":\"Soman Kp, Loganathan R, Vijaya Ms, Ajay V, Shivsubramani K\",\"doi\":\"10.1109/ICCTA.2007.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently Sandor Szedmak and John Shawe-Taylor showed that multiclass support vector machines can be implemented with single class complexity. In this paper we show that computational complexity of their algorithm can be further reduced by modelling the problem as a multiclass proximal support vector machines. The new formulation requires only a linear equation solver. The paper then discusses the multiclass transformation of iterative single data algorithm. This method is faster than the first method. The two algorithm are so much simple that SVM training and testing of huge datasets can be implemented even in a spreadsheet\",\"PeriodicalId\":308247,\"journal\":{\"name\":\"2007 International Conference on Computing: Theory and Applications (ICCTA'07)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computing: Theory and Applications (ICCTA'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCTA.2007.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTA.2007.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast Single-Shot Multiclass Proximal Support Vector Machines and Perceptions
Recently Sandor Szedmak and John Shawe-Taylor showed that multiclass support vector machines can be implemented with single class complexity. In this paper we show that computational complexity of their algorithm can be further reduced by modelling the problem as a multiclass proximal support vector machines. The new formulation requires only a linear equation solver. The paper then discusses the multiclass transformation of iterative single data algorithm. This method is faster than the first method. The two algorithm are so much simple that SVM training and testing of huge datasets can be implemented even in a spreadsheet