电路定义的枚举类

N. Creignou, Arnaud Durand, H. Vollmer
{"title":"电路定义的枚举类","authors":"N. Creignou, Arnaud Durand, H. Vollmer","doi":"10.48550/arXiv.2205.00539","DOIUrl":null,"url":null,"abstract":"We refine the complexity landscape for enumeration problems by introducing very low classes defined by using Boolean circuits as enumerators. We locate well-known enumeration problems, e.g., from graph theory, Gray code enumeration, and propositional satisfiability in our classes. In this way we obtain a framework to distinguish between the complexity of different problems known to be in $\\mathbf{DelayP}$, for which a formal way of comparison was not possible to this day.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enumeration Classes Defined by Circuits\",\"authors\":\"N. Creignou, Arnaud Durand, H. Vollmer\",\"doi\":\"10.48550/arXiv.2205.00539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We refine the complexity landscape for enumeration problems by introducing very low classes defined by using Boolean circuits as enumerators. We locate well-known enumeration problems, e.g., from graph theory, Gray code enumeration, and propositional satisfiability in our classes. In this way we obtain a framework to distinguish between the complexity of different problems known to be in $\\\\mathbf{DelayP}$, for which a formal way of comparison was not possible to this day.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2205.00539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.00539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过引入使用布尔电路作为枚举器定义的非常低的类来细化枚举问题的复杂性。我们在我们的课程中找到了众所周知的枚举问题,例如图论,格雷码枚举和命题可满足性。通过这种方式,我们获得了一个框架来区分$\mathbf{DelayP}$中已知的不同问题的复杂性,对于这些问题,迄今为止还不可能有正式的比较方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enumeration Classes Defined by Circuits
We refine the complexity landscape for enumeration problems by introducing very low classes defined by using Boolean circuits as enumerators. We locate well-known enumeration problems, e.g., from graph theory, Gray code enumeration, and propositional satisfiability in our classes. In this way we obtain a framework to distinguish between the complexity of different problems known to be in $\mathbf{DelayP}$, for which a formal way of comparison was not possible to this day.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信