利用消息传递接口提高并行化三维数据阵列转置算法的性能

Masahiro Arai, F. Akagi, Saneyasu Yamaguchi, K. Yoshida
{"title":"利用消息传递接口提高并行化三维数据阵列转置算法的性能","authors":"Masahiro Arai, F. Akagi, Saneyasu Yamaguchi, K. Yoshida","doi":"10.1109/CANDARW.2018.00094","DOIUrl":null,"url":null,"abstract":"Parallelization with a message passing interface (MPI) is useful for improving the performance of the LLG micromagnetics simulator used for analysis of magnetization behavior. However, it is necessary to transpose elements of 3-D data arrays to be consistent in the data. In this paper, we investigated two methods for improving the performance of the transpose processes. One divides 6-transpose-processes in a triple for loop into 6-triple for loops. The other transposes the elements of the 3-D data arrays in each process before the data is integrated by using MPI_Allgather(). We compared the effects of the two methods on improving performances on two supercomputers: Oakforest-PACS and Reedbush-U. The results show that the former method was only effective on Oakforest-PACS, but the latter method was effective on both computers.","PeriodicalId":329439,"journal":{"name":"2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Performance of Transposition Algorithm of 3-D Data Array for Parallelization Using Message Passing Interface\",\"authors\":\"Masahiro Arai, F. Akagi, Saneyasu Yamaguchi, K. Yoshida\",\"doi\":\"10.1109/CANDARW.2018.00094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parallelization with a message passing interface (MPI) is useful for improving the performance of the LLG micromagnetics simulator used for analysis of magnetization behavior. However, it is necessary to transpose elements of 3-D data arrays to be consistent in the data. In this paper, we investigated two methods for improving the performance of the transpose processes. One divides 6-transpose-processes in a triple for loop into 6-triple for loops. The other transposes the elements of the 3-D data arrays in each process before the data is integrated by using MPI_Allgather(). We compared the effects of the two methods on improving performances on two supercomputers: Oakforest-PACS and Reedbush-U. The results show that the former method was only effective on Oakforest-PACS, but the latter method was effective on both computers.\",\"PeriodicalId\":329439,\"journal\":{\"name\":\"2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CANDARW.2018.00094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CANDARW.2018.00094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有消息传递接口(MPI)的并行化有助于提高用于磁化行为分析的LLG微磁模拟器的性能。然而,需要对三维数据数组中的元素进行转置,使其在数据中保持一致。在本文中,我们研究了两种改进转置过程性能的方法。我们把一个三重for循环中的6个转置过程分成6个三重for循环。另一个是在使用MPI_Allgather()对数据进行集成之前,在每个进程中对3-D数据数组的元素进行转置。我们在两台超级计算机Oakforest-PACS和Reedbush-U上比较了两种方法在提高性能方面的效果。结果表明,前一种方法仅对Oakforest-PACS有效,后一种方法在两台计算机上都有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Performance of Transposition Algorithm of 3-D Data Array for Parallelization Using Message Passing Interface
Parallelization with a message passing interface (MPI) is useful for improving the performance of the LLG micromagnetics simulator used for analysis of magnetization behavior. However, it is necessary to transpose elements of 3-D data arrays to be consistent in the data. In this paper, we investigated two methods for improving the performance of the transpose processes. One divides 6-transpose-processes in a triple for loop into 6-triple for loops. The other transposes the elements of the 3-D data arrays in each process before the data is integrated by using MPI_Allgather(). We compared the effects of the two methods on improving performances on two supercomputers: Oakforest-PACS and Reedbush-U. The results show that the former method was only effective on Oakforest-PACS, but the latter method was effective on both computers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信