{"title":"15N同位素分离柱的鲁棒控制","authors":"R. Both, E. Dulf, A. Neaga, C. Darab","doi":"10.1109/SACI.2012.6249969","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to design an advanced control for the 15N-isotope separation processes for such complex processes is necessary Due to the nonlinear behavior of the process and due to possible load changes and other disturbances, the use of advanced control strategy is necessary. Designing the advanced control based on the nonlinear model of the isotope separation process leads to a very complex controller structure, hard to implement. This is the reason why a simple linear model of the process which describes its most important properties is preferred. In order to counter act the simplifications introduced in the modeling stage, to reduce the sensitivity of the system and to limit the command signals, the robust control strategy is chosen. From the multiple design strategies available for multivariable control, the authors have chosen the H∞, robust design method. The designed controller is implemented in Matlab/SIMULINK and tested in simulations achieving successful results.","PeriodicalId":293436,"journal":{"name":"2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust control of the 15N isotope separation column\",\"authors\":\"R. Both, E. Dulf, A. Neaga, C. Darab\",\"doi\":\"10.1109/SACI.2012.6249969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to design an advanced control for the 15N-isotope separation processes for such complex processes is necessary Due to the nonlinear behavior of the process and due to possible load changes and other disturbances, the use of advanced control strategy is necessary. Designing the advanced control based on the nonlinear model of the isotope separation process leads to a very complex controller structure, hard to implement. This is the reason why a simple linear model of the process which describes its most important properties is preferred. In order to counter act the simplifications introduced in the modeling stage, to reduce the sensitivity of the system and to limit the command signals, the robust control strategy is chosen. From the multiple design strategies available for multivariable control, the authors have chosen the H∞, robust design method. The designed controller is implemented in Matlab/SIMULINK and tested in simulations achieving successful results.\",\"PeriodicalId\":293436,\"journal\":{\"name\":\"2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2012.6249969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2012.6249969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust control of the 15N isotope separation column
The aim of this paper is to design an advanced control for the 15N-isotope separation processes for such complex processes is necessary Due to the nonlinear behavior of the process and due to possible load changes and other disturbances, the use of advanced control strategy is necessary. Designing the advanced control based on the nonlinear model of the isotope separation process leads to a very complex controller structure, hard to implement. This is the reason why a simple linear model of the process which describes its most important properties is preferred. In order to counter act the simplifications introduced in the modeling stage, to reduce the sensitivity of the system and to limit the command signals, the robust control strategy is chosen. From the multiple design strategies available for multivariable control, the authors have chosen the H∞, robust design method. The designed controller is implemented in Matlab/SIMULINK and tested in simulations achieving successful results.