基于二值LSTMs的腕部PPG实时HR估计

Leandro Mateus Giacomini Rocha, N. V. Helleputte, Muqing Liu, Dwaipayan Biswas, B. Verhoef, S. Bampi, C. Kim, C. Hoof, M. Konijnenburg, M. Verhelst
{"title":"基于二值LSTMs的腕部PPG实时HR估计","authors":"Leandro Mateus Giacomini Rocha, N. V. Helleputte, Muqing Liu, Dwaipayan Biswas, B. Verhoef, S. Bampi, C. Kim, C. Hoof, M. Konijnenburg, M. Verhelst","doi":"10.1109/BIOCAS.2019.8918726","DOIUrl":null,"url":null,"abstract":"Wrist-worn photoplethysmography (PPG) sensors present a popular alternative to electrocardiogram recording for heart rate (HR) estimation. However, their accuracy is limited by motion artifacts inherent in ambulatory settings. In this paper, we propose a binarized neural network framework, b-CorNET, to efficiently estimate HR from single-channel wrist PPG signals during intense physical activity. The model comprises two binary convolution neural network layers followed by two binary long short-term memory (b-LSTM) layers and a dense layer working on quantized PPG data. The proposed framework achieves an MAE of 3.75±3.05 bpm when evaluated on 12 IEEE SPC subjects. Furthermore, a novel, low-complexity architecture for the b-LSTM layers is proposed and efficiently mapped on a Xilinx Virtex5 FPGA, enabling HR computation.","PeriodicalId":222264,"journal":{"name":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Real-time HR Estimation from wrist PPG using Binary LSTMs\",\"authors\":\"Leandro Mateus Giacomini Rocha, N. V. Helleputte, Muqing Liu, Dwaipayan Biswas, B. Verhoef, S. Bampi, C. Kim, C. Hoof, M. Konijnenburg, M. Verhelst\",\"doi\":\"10.1109/BIOCAS.2019.8918726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wrist-worn photoplethysmography (PPG) sensors present a popular alternative to electrocardiogram recording for heart rate (HR) estimation. However, their accuracy is limited by motion artifacts inherent in ambulatory settings. In this paper, we propose a binarized neural network framework, b-CorNET, to efficiently estimate HR from single-channel wrist PPG signals during intense physical activity. The model comprises two binary convolution neural network layers followed by two binary long short-term memory (b-LSTM) layers and a dense layer working on quantized PPG data. The proposed framework achieves an MAE of 3.75±3.05 bpm when evaluated on 12 IEEE SPC subjects. Furthermore, a novel, low-complexity architecture for the b-LSTM layers is proposed and efficiently mapped on a Xilinx Virtex5 FPGA, enabling HR computation.\",\"PeriodicalId\":222264,\"journal\":{\"name\":\"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2019.8918726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2019.8918726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

腕上佩戴的光电容积脉搏波(PPG)传感器是一种流行的替代心电图记录的心率(HR)估计。然而,它们的准确性受到动态环境中固有的运动伪影的限制。在本文中,我们提出了一个二值化神经网络框架,b-CorNET,以有效地估计高强度运动时单通道手腕PPG信号的HR。该模型包括两个二进制卷积神经网络层,随后是两个二进制长短期记忆(b-LSTM)层和一个处理量化PPG数据的密集层。该框架在12个IEEE SPC科目上的MAE为3.75±3.05 bpm。此外,提出了一种新的低复杂度的b-LSTM层架构,并有效地映射到Xilinx Virtex5 FPGA上,实现了HR计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time HR Estimation from wrist PPG using Binary LSTMs
Wrist-worn photoplethysmography (PPG) sensors present a popular alternative to electrocardiogram recording for heart rate (HR) estimation. However, their accuracy is limited by motion artifacts inherent in ambulatory settings. In this paper, we propose a binarized neural network framework, b-CorNET, to efficiently estimate HR from single-channel wrist PPG signals during intense physical activity. The model comprises two binary convolution neural network layers followed by two binary long short-term memory (b-LSTM) layers and a dense layer working on quantized PPG data. The proposed framework achieves an MAE of 3.75±3.05 bpm when evaluated on 12 IEEE SPC subjects. Furthermore, a novel, low-complexity architecture for the b-LSTM layers is proposed and efficiently mapped on a Xilinx Virtex5 FPGA, enabling HR computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信