Georgekutty Jose Maniyattu, Eldho Geegy, N. Leiter, Maximilian Wohlschlager, M. Versen, C. Laforsch
{"title":"利用荧光寿命成像显微镜识别塑料的神经网络的发展","authors":"Georgekutty Jose Maniyattu, Eldho Geegy, N. Leiter, Maximilian Wohlschlager, M. Versen, C. Laforsch","doi":"10.1109/SAS54819.2022.9881372","DOIUrl":null,"url":null,"abstract":"Plastics have become a major part of human’s daily life. An uncontrolled usage of plastic leads to an accumulation in the environment posing a threat to flora and fauna, if not recycled correctly. The correct sorting and recycling of the most commonly available plastic types and an identification of plastic in the environment are important. Fluorescence lifetime imaging microscopy shows a high potential in sorting and identifying plastic types. A data-based and an image-based classification are investigated using python programming language to demonstrate the potential of a neural network based on fluorescence lifetime images to identify plastic types. The results indicate that the data-based classification has a higher identification accuracy compared to the image-based classification.","PeriodicalId":129732,"journal":{"name":"2022 IEEE Sensors Applications Symposium (SAS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of a neural network to identify plastics using Fluorescence Lifetime Imaging Microscopy\",\"authors\":\"Georgekutty Jose Maniyattu, Eldho Geegy, N. Leiter, Maximilian Wohlschlager, M. Versen, C. Laforsch\",\"doi\":\"10.1109/SAS54819.2022.9881372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plastics have become a major part of human’s daily life. An uncontrolled usage of plastic leads to an accumulation in the environment posing a threat to flora and fauna, if not recycled correctly. The correct sorting and recycling of the most commonly available plastic types and an identification of plastic in the environment are important. Fluorescence lifetime imaging microscopy shows a high potential in sorting and identifying plastic types. A data-based and an image-based classification are investigated using python programming language to demonstrate the potential of a neural network based on fluorescence lifetime images to identify plastic types. The results indicate that the data-based classification has a higher identification accuracy compared to the image-based classification.\",\"PeriodicalId\":129732,\"journal\":{\"name\":\"2022 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS54819.2022.9881372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS54819.2022.9881372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a neural network to identify plastics using Fluorescence Lifetime Imaging Microscopy
Plastics have become a major part of human’s daily life. An uncontrolled usage of plastic leads to an accumulation in the environment posing a threat to flora and fauna, if not recycled correctly. The correct sorting and recycling of the most commonly available plastic types and an identification of plastic in the environment are important. Fluorescence lifetime imaging microscopy shows a high potential in sorting and identifying plastic types. A data-based and an image-based classification are investigated using python programming language to demonstrate the potential of a neural network based on fluorescence lifetime images to identify plastic types. The results indicate that the data-based classification has a higher identification accuracy compared to the image-based classification.