城市交通状态多模型贝叶斯克里格预测

K. Offor, Peng Wang, L. Mihaylova
{"title":"城市交通状态多模型贝叶斯克里格预测","authors":"K. Offor, Peng Wang, L. Mihaylova","doi":"10.1109/SDF.2019.8916655","DOIUrl":null,"url":null,"abstract":"In the commonly used Kriging approaches, the covariance function depends only on the separation distance irrespective of the traffic at the considered locations. A key limitation of such an approach is its inability to capture well the traffic dynamics and transitions between different states. This paper proposes a Bayesian Kriging approach for the prediction of urban traffic. The approach can capture these dynamics and model changes via the covariance matrix. The main novelty consists in representing both stationary and nonstationary changes in traffic flows by a discriminative covariance function conditioned on the observation at each location. An advantage of the approach is that it can represent congested regions and interactions in both upstream and downstream areas. Experiment carried out with real data from Santander, Spain shows that RMSE of our method outperforms traditional Kriging method by 8.4%","PeriodicalId":186196,"journal":{"name":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Model Bayesian Kriging for Urban Traffic State Prediction\",\"authors\":\"K. Offor, Peng Wang, L. Mihaylova\",\"doi\":\"10.1109/SDF.2019.8916655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the commonly used Kriging approaches, the covariance function depends only on the separation distance irrespective of the traffic at the considered locations. A key limitation of such an approach is its inability to capture well the traffic dynamics and transitions between different states. This paper proposes a Bayesian Kriging approach for the prediction of urban traffic. The approach can capture these dynamics and model changes via the covariance matrix. The main novelty consists in representing both stationary and nonstationary changes in traffic flows by a discriminative covariance function conditioned on the observation at each location. An advantage of the approach is that it can represent congested regions and interactions in both upstream and downstream areas. Experiment carried out with real data from Santander, Spain shows that RMSE of our method outperforms traditional Kriging method by 8.4%\",\"PeriodicalId\":186196,\"journal\":{\"name\":\"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDF.2019.8916655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2019.8916655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在常用的Kriging方法中,协方差函数只依赖于分离距离,而与所考虑位置的交通无关。这种方法的一个关键限制是它不能很好地捕获流量动态和不同状态之间的转换。本文提出了一种用于城市交通预测的贝叶斯克里格方法。该方法可以通过协方差矩阵捕获这些动态和模型变化。主要的新颖之处在于,通过以每个位置的观测为条件的判别协方差函数来表示交通流的平稳和非平稳变化。该方法的一个优点是它可以表示上游和下游区域的拥挤区域和相互作用。用西班牙桑坦德银行的实际数据进行的实验表明,该方法的均方根误差比传统的克里格方法高出8.4%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Model Bayesian Kriging for Urban Traffic State Prediction
In the commonly used Kriging approaches, the covariance function depends only on the separation distance irrespective of the traffic at the considered locations. A key limitation of such an approach is its inability to capture well the traffic dynamics and transitions between different states. This paper proposes a Bayesian Kriging approach for the prediction of urban traffic. The approach can capture these dynamics and model changes via the covariance matrix. The main novelty consists in representing both stationary and nonstationary changes in traffic flows by a discriminative covariance function conditioned on the observation at each location. An advantage of the approach is that it can represent congested regions and interactions in both upstream and downstream areas. Experiment carried out with real data from Santander, Spain shows that RMSE of our method outperforms traditional Kriging method by 8.4%
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信