临床文本中无序命名实体识别的条件随机场和支持向量机

Dingcheng Li, G. Savova, K. Schuler
{"title":"临床文本中无序命名实体识别的条件随机场和支持向量机","authors":"Dingcheng Li, G. Savova, K. Schuler","doi":"10.3115/1572306.1572326","DOIUrl":null,"url":null,"abstract":"We present a comparative study between two machine learning methods, Conditional Random Fields and Support Vector Machines for clinical named entity recognition. We explore their applicability to clinical domain. Evaluation against a set of gold standard named entities shows that CRFs outperform SVMs. The best F-score with CRFs is 0.86 and for the SVMs is 0.64 as compared to a baseline of 0.60.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":"{\"title\":\"Conditional Random Fields and Support Vector Machines for Disorder Named Entity Recognition in Clinical Texts\",\"authors\":\"Dingcheng Li, G. Savova, K. Schuler\",\"doi\":\"10.3115/1572306.1572326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a comparative study between two machine learning methods, Conditional Random Fields and Support Vector Machines for clinical named entity recognition. We explore their applicability to clinical domain. Evaluation against a set of gold standard named entities shows that CRFs outperform SVMs. The best F-score with CRFs is 0.86 and for the SVMs is 0.64 as compared to a baseline of 0.60.\",\"PeriodicalId\":200974,\"journal\":{\"name\":\"Workshop on Biomedical Natural Language Processing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"106\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Biomedical Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1572306.1572326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1572306.1572326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

摘要

我们提出了两种机器学习方法的比较研究,条件随机场和支持向量机用于临床命名实体识别。探讨其在临床领域的适用性。对一组黄金标准命名实体的评估表明,crf优于svm。与基线0.60相比,CRFs的最佳f值为0.86,svm的最佳f值为0.64。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conditional Random Fields and Support Vector Machines for Disorder Named Entity Recognition in Clinical Texts
We present a comparative study between two machine learning methods, Conditional Random Fields and Support Vector Machines for clinical named entity recognition. We explore their applicability to clinical domain. Evaluation against a set of gold standard named entities shows that CRFs outperform SVMs. The best F-score with CRFs is 0.86 and for the SVMs is 0.64 as compared to a baseline of 0.60.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信