评估联邦地面站的能力

Sara C. Spangelo, D. Boone, J. Cutler
{"title":"评估联邦地面站的能力","authors":"Sara C. Spangelo, D. Boone, J. Cutler","doi":"10.1109/AERO.2010.5446950","DOIUrl":null,"url":null,"abstract":"We introduce models and tools to assess the communication capacity of dynamic ground station networks, in particular federated networks that are composed of geographically diverse and independent stations that loosely collaborate to provide increased satellite connectivity. Network capacity is the amount of information exchanged between a network of satellites and ground stations. The constraints on total network capacity which influence transmission capabilities are outlined, such as the satellite, ground station, and overall network parameters. Orbit propagators are combined with engineering analysis software to compare the capacity of existing and future ground station networks. Simulation results from recent clustered satellite launches are presented and discussed. By studying network capacity, we identify the potential for leveraging these federated networks to support multiple missions from multiple institutions. Future work is outlined, including the need to accurately model both satellite communication requirements, develop real time network analysis tools, and work towards developing dynamic optimization techinques for global autonomous networks.","PeriodicalId":378029,"journal":{"name":"2010 IEEE Aerospace Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Assessing the capacity of a federated ground station\",\"authors\":\"Sara C. Spangelo, D. Boone, J. Cutler\",\"doi\":\"10.1109/AERO.2010.5446950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce models and tools to assess the communication capacity of dynamic ground station networks, in particular federated networks that are composed of geographically diverse and independent stations that loosely collaborate to provide increased satellite connectivity. Network capacity is the amount of information exchanged between a network of satellites and ground stations. The constraints on total network capacity which influence transmission capabilities are outlined, such as the satellite, ground station, and overall network parameters. Orbit propagators are combined with engineering analysis software to compare the capacity of existing and future ground station networks. Simulation results from recent clustered satellite launches are presented and discussed. By studying network capacity, we identify the potential for leveraging these federated networks to support multiple missions from multiple institutions. Future work is outlined, including the need to accurately model both satellite communication requirements, develop real time network analysis tools, and work towards developing dynamic optimization techinques for global autonomous networks.\",\"PeriodicalId\":378029,\"journal\":{\"name\":\"2010 IEEE Aerospace Conference\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2010.5446950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2010.5446950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们介绍了模型和工具来评估动态地面站网络的通信能力,特别是由地理上不同和独立的站点组成的联邦网络,这些站点松散地协作以提供增加的卫星连接。网络容量是指由卫星和地面站组成的网络之间交换的信息量。概述了影响传输能力的网络总容量约束,如卫星、地面站和整体网络参数。轨道传播器与工程分析软件相结合,以比较现有和未来地面站网络的容量。给出并讨论了近年来卫星集群发射的仿真结果。通过研究网络容量,我们确定了利用这些联合网络来支持来自多个机构的多个任务的潜力。概述了未来的工作,包括需要准确地模拟卫星通信需求,开发实时网络分析工具,并努力开发全球自治网络的动态优化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the capacity of a federated ground station
We introduce models and tools to assess the communication capacity of dynamic ground station networks, in particular federated networks that are composed of geographically diverse and independent stations that loosely collaborate to provide increased satellite connectivity. Network capacity is the amount of information exchanged between a network of satellites and ground stations. The constraints on total network capacity which influence transmission capabilities are outlined, such as the satellite, ground station, and overall network parameters. Orbit propagators are combined with engineering analysis software to compare the capacity of existing and future ground station networks. Simulation results from recent clustered satellite launches are presented and discussed. By studying network capacity, we identify the potential for leveraging these federated networks to support multiple missions from multiple institutions. Future work is outlined, including the need to accurately model both satellite communication requirements, develop real time network analysis tools, and work towards developing dynamic optimization techinques for global autonomous networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信