脑电数据中传播相位瞬态的估计——动态逻辑神经建模方法的应用

R. Kozma, R. Deming, L. Perlovsky
{"title":"脑电数据中传播相位瞬态的估计——动态逻辑神经建模方法的应用","authors":"R. Kozma, R. Deming, L. Perlovsky","doi":"10.1109/IJCNN.2007.4371324","DOIUrl":null,"url":null,"abstract":"Dynamic logic (DL) approach establishes a unified framework for the statistical description of mixtures using model-based neural networks. In the present work, we extend the previous results to dynamic processes where the mixture parameters, including partial and total energy of the components are time-dependent. Equations are derived and solved for the estimation of parameters which vary in time. The results provide optimal approximation to a broad class of pattern recognition and process identification problems with variable and noisy data. The introduced methodology is demonstrated on the example of identification of propagating phase gradients generated by intermittent fluctuations in non-equilibrium neural media.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Estimation of Propagating Phase Transients in EEG Data - Application of Dynamic Logic Neural Modeling Approach\",\"authors\":\"R. Kozma, R. Deming, L. Perlovsky\",\"doi\":\"10.1109/IJCNN.2007.4371324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic logic (DL) approach establishes a unified framework for the statistical description of mixtures using model-based neural networks. In the present work, we extend the previous results to dynamic processes where the mixture parameters, including partial and total energy of the components are time-dependent. Equations are derived and solved for the estimation of parameters which vary in time. The results provide optimal approximation to a broad class of pattern recognition and process identification problems with variable and noisy data. The introduced methodology is demonstrated on the example of identification of propagating phase gradients generated by intermittent fluctuations in non-equilibrium neural media.\",\"PeriodicalId\":350091,\"journal\":{\"name\":\"2007 International Joint Conference on Neural Networks\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2007.4371324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

动态逻辑(DL)方法为基于模型的神经网络的混合统计描述建立了统一的框架。在目前的工作中,我们将以前的结果推广到混合参数,包括部分和总能量的组分是时间相关的动态过程。推导并求解了随时间变化的参数估计方程。结果为具有变量和噪声数据的广泛类型的模式识别和过程识别问题提供了最佳逼近。以非平衡神经介质中由间歇波动产生的传播相位梯度识别为例,对所介绍的方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Propagating Phase Transients in EEG Data - Application of Dynamic Logic Neural Modeling Approach
Dynamic logic (DL) approach establishes a unified framework for the statistical description of mixtures using model-based neural networks. In the present work, we extend the previous results to dynamic processes where the mixture parameters, including partial and total energy of the components are time-dependent. Equations are derived and solved for the estimation of parameters which vary in time. The results provide optimal approximation to a broad class of pattern recognition and process identification problems with variable and noisy data. The introduced methodology is demonstrated on the example of identification of propagating phase gradients generated by intermittent fluctuations in non-equilibrium neural media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信