利用网络数据进行实时出租车需求预测

Ioulia Markou, Filipe Rodrigues, F. Pereira
{"title":"利用网络数据进行实时出租车需求预测","authors":"Ioulia Markou, Filipe Rodrigues, F. Pereira","doi":"10.1109/ITSC.2018.8569015","DOIUrl":null,"url":null,"abstract":"In transportation, nature, economy, environment, and many other settings, there are multiple simultaneous phenomena happening that are of interest to model and predict. Over the last few years, the traffic data that we have at our disposal have significantly increased, and we have truly entered the era of big data for transportation. Most existing traffic flow prediction methods mainly focus on capturing recurrent mobility trends that relate to habitual/routine behaviour, and on exploiting short-term correlations with recent observation patterns. However, valuable information that is often available in the form of unstructured data is neglected when attempting to improve forecasting results. In this paper, we explore time-series data and textual information combinations using machine learning techniques in the context of creating a prediction model that is able to capture in real-time future stressful situations of the studied transportation system. Using publicly available taxi data from New York, we empirically show that the proposed models are able to significantly reduce the error in the forecasts. The final mean absolute error (MAE) of our predictions is decreased by 19.5% for a three months testing period and by 57% if we focus only on event periods.","PeriodicalId":395239,"journal":{"name":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Real-Time Taxi Demand Prediction using data from the web\",\"authors\":\"Ioulia Markou, Filipe Rodrigues, F. Pereira\",\"doi\":\"10.1109/ITSC.2018.8569015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In transportation, nature, economy, environment, and many other settings, there are multiple simultaneous phenomena happening that are of interest to model and predict. Over the last few years, the traffic data that we have at our disposal have significantly increased, and we have truly entered the era of big data for transportation. Most existing traffic flow prediction methods mainly focus on capturing recurrent mobility trends that relate to habitual/routine behaviour, and on exploiting short-term correlations with recent observation patterns. However, valuable information that is often available in the form of unstructured data is neglected when attempting to improve forecasting results. In this paper, we explore time-series data and textual information combinations using machine learning techniques in the context of creating a prediction model that is able to capture in real-time future stressful situations of the studied transportation system. Using publicly available taxi data from New York, we empirically show that the proposed models are able to significantly reduce the error in the forecasts. The final mean absolute error (MAE) of our predictions is decreased by 19.5% for a three months testing period and by 57% if we focus only on event periods.\",\"PeriodicalId\":395239,\"journal\":{\"name\":\"2018 21st International Conference on Intelligent Transportation Systems (ITSC)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 21st International Conference on Intelligent Transportation Systems (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2018.8569015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2018.8569015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在交通、自然、经济、环境和许多其他环境中,有许多同时发生的现象,这些现象值得建模和预测。在过去的几年里,我们掌握的交通数据显著增加,我们真正进入了交通大数据时代。大多数现有的交通流量预测方法主要侧重于捕捉与习惯性/日常行为相关的反复流动趋势,以及利用与近期观察模式的短期相关性。然而,在试图改进预测结果时,往往以非结构化数据的形式提供的有价值的信息被忽视了。在本文中,我们使用机器学习技术在创建预测模型的背景下探索时间序列数据和文本信息的组合,该模型能够实时捕获所研究的交通系统的未来压力情况。使用来自纽约的公开出租车数据,我们的经验表明,所提出的模型能够显著减少预测中的误差。在三个月的测试期内,我们预测的最终平均绝对误差(MAE)降低了19.5%,如果我们只关注事件周期,则降低了57%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Taxi Demand Prediction using data from the web
In transportation, nature, economy, environment, and many other settings, there are multiple simultaneous phenomena happening that are of interest to model and predict. Over the last few years, the traffic data that we have at our disposal have significantly increased, and we have truly entered the era of big data for transportation. Most existing traffic flow prediction methods mainly focus on capturing recurrent mobility trends that relate to habitual/routine behaviour, and on exploiting short-term correlations with recent observation patterns. However, valuable information that is often available in the form of unstructured data is neglected when attempting to improve forecasting results. In this paper, we explore time-series data and textual information combinations using machine learning techniques in the context of creating a prediction model that is able to capture in real-time future stressful situations of the studied transportation system. Using publicly available taxi data from New York, we empirically show that the proposed models are able to significantly reduce the error in the forecasts. The final mean absolute error (MAE) of our predictions is decreased by 19.5% for a three months testing period and by 57% if we focus only on event periods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信