稀疏信号恢复的最小二乘跟踪

Nicolae Cleju
{"title":"稀疏信号恢复的最小二乘跟踪","authors":"Nicolae Cleju","doi":"10.1109/ISSCS.2017.8034924","DOIUrl":null,"url":null,"abstract":"This paper presents a novel algorithm for sparse signal recovery, named Least Squares Pursuit, based on least-squares minimization followed by choosing the atom with the largest resulting coefficient, in a greedy one-by-one fashion. It follows a similar approach to that of Orthogonal Matching Pursuit, but with different prioritization of the constraints. We propose an efficient implementation for Least Squares Pursuit, derive theoretical guarantees for signal recovery, and finally present promising simulation results.","PeriodicalId":338255,"journal":{"name":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Least Squares Pursuit for sparse signal recovery\",\"authors\":\"Nicolae Cleju\",\"doi\":\"10.1109/ISSCS.2017.8034924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel algorithm for sparse signal recovery, named Least Squares Pursuit, based on least-squares minimization followed by choosing the atom with the largest resulting coefficient, in a greedy one-by-one fashion. It follows a similar approach to that of Orthogonal Matching Pursuit, but with different prioritization of the constraints. We propose an efficient implementation for Least Squares Pursuit, derive theoretical guarantees for signal recovery, and finally present promising simulation results.\",\"PeriodicalId\":338255,\"journal\":{\"name\":\"2017 International Symposium on Signals, Circuits and Systems (ISSCS)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Signals, Circuits and Systems (ISSCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCS.2017.8034924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2017.8034924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种新的稀疏信号恢复算法,即最小二乘追踪算法,该算法基于最小二乘最小化,然后以贪婪逐个的方式选择结果系数最大的原子。它遵循与正交匹配追踪相似的方法,但具有不同的约束优先级。我们提出了一种有效的最小二乘追踪方法,给出了信号恢复的理论保证,最后给出了令人满意的仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Least Squares Pursuit for sparse signal recovery
This paper presents a novel algorithm for sparse signal recovery, named Least Squares Pursuit, based on least-squares minimization followed by choosing the atom with the largest resulting coefficient, in a greedy one-by-one fashion. It follows a similar approach to that of Orthogonal Matching Pursuit, but with different prioritization of the constraints. We propose an efficient implementation for Least Squares Pursuit, derive theoretical guarantees for signal recovery, and finally present promising simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信