模型检验的概率pi演算

G. Norman, C. Palamidessi, D. Parker, Peng Wu
{"title":"模型检验的概率pi演算","authors":"G. Norman, C. Palamidessi, D. Parker, Peng Wu","doi":"10.1109/QEST.2007.31","DOIUrl":null,"url":null,"abstract":"We present an implementation of model checking for the probabilistic pi-calculus-calculus, a process algebra which supports modelling of concurrency, mobility and discrete probabilistic behaviour. Formal verification techniques for this calculus have clear applications in several domains, including mobile ad-hoc network protocols and random security protocols. Despite this, no implementation of automated verification exists. Building upon the (non-probabilistic) pi-calculus model checker MMC, we first show an automated procedure for constructing the Markov decision process representing a probabilistic pi-calculus process. This can then be verified using existing probabilistic model checkers such as PRISM. Secondly, we demonstrate how for a large class of systems a more efficient, compositional approach can be applied, which uses our extension of MMC on each parallel component of the system and then translates the results into a high-level model description for the PRISM tool. The feasibility of our techniques is demonstrated through three case studies from the pi-calculus literature.","PeriodicalId":249627,"journal":{"name":"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Model checking the probabilistic pi-calculus\",\"authors\":\"G. Norman, C. Palamidessi, D. Parker, Peng Wu\",\"doi\":\"10.1109/QEST.2007.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an implementation of model checking for the probabilistic pi-calculus-calculus, a process algebra which supports modelling of concurrency, mobility and discrete probabilistic behaviour. Formal verification techniques for this calculus have clear applications in several domains, including mobile ad-hoc network protocols and random security protocols. Despite this, no implementation of automated verification exists. Building upon the (non-probabilistic) pi-calculus model checker MMC, we first show an automated procedure for constructing the Markov decision process representing a probabilistic pi-calculus process. This can then be verified using existing probabilistic model checkers such as PRISM. Secondly, we demonstrate how for a large class of systems a more efficient, compositional approach can be applied, which uses our extension of MMC on each parallel component of the system and then translates the results into a high-level model description for the PRISM tool. The feasibility of our techniques is demonstrated through three case studies from the pi-calculus literature.\",\"PeriodicalId\":249627,\"journal\":{\"name\":\"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QEST.2007.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QEST.2007.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们提出了一种概率pi-微积分的模型检查实现,pi-微积分是一种支持并发性、移动性和离散概率行为建模的过程代数。这种演算的形式化验证技术在几个领域有明确的应用,包括移动自组织网络协议和随机安全协议。尽管如此,仍然没有自动验证的实现。在(非概率)pi-微积分模型检查器MMC的基础上,我们首先展示了一个用于构造表示概率pi-微积分过程的马尔可夫决策过程的自动化过程。然后可以使用现有的概率模型检查器(如PRISM)来验证这一点。其次,我们演示了如何对大型系统应用更有效的组合方法,该方法在系统的每个并行组件上使用我们的MMC扩展,然后将结果转换为PRISM工具的高级模型描述。我们的技术的可行性是通过三个案例研究从pi微积分文献证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model checking the probabilistic pi-calculus
We present an implementation of model checking for the probabilistic pi-calculus-calculus, a process algebra which supports modelling of concurrency, mobility and discrete probabilistic behaviour. Formal verification techniques for this calculus have clear applications in several domains, including mobile ad-hoc network protocols and random security protocols. Despite this, no implementation of automated verification exists. Building upon the (non-probabilistic) pi-calculus model checker MMC, we first show an automated procedure for constructing the Markov decision process representing a probabilistic pi-calculus process. This can then be verified using existing probabilistic model checkers such as PRISM. Secondly, we demonstrate how for a large class of systems a more efficient, compositional approach can be applied, which uses our extension of MMC on each parallel component of the system and then translates the results into a high-level model description for the PRISM tool. The feasibility of our techniques is demonstrated through three case studies from the pi-calculus literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信