基于信息局部特征的城市目标识别

G. Fritz, C. Seifert, L. Paletta
{"title":"基于信息局部特征的城市目标识别","authors":"G. Fritz, C. Seifert, L. Paletta","doi":"10.1109/ROBOT.2005.1570108","DOIUrl":null,"url":null,"abstract":"Autonomous mobile agents require object recognition for high level interpretation and localization in complex scenes. In urban environments, recognition of buildings might play a dominant role in robotic systems that need object based navigation, that take advantage of visual feedback and multimodal information for self-localization, or that enable association to related information from the identified semantics. We present a new method – the informative local features approach – based on an information theoretic saliency measure that is rapidly derived from a local Parzen window density estimation in feature subspace. From the learning of a decision tree based mapping to informative features, it enables attentive access to discriminative information and thereby significantly speeds up the recognition process. This approach is highly robust with respect to severe degrees of partial occlusion, noise, and tolerant to some changes in scale and illumination. We present performance evaluation on our publicly available reference object database (TSG-20) that demonstrates the efficiency of this approach, case wise even outperforming the SIFT feature approach [1]. Building recognition will be advantageous in various application domains, such as, mobile mapping, unmanned vehicle navigation, and systems for car driver assistance.","PeriodicalId":350878,"journal":{"name":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Urban Object Recognition from Informative Local Features\",\"authors\":\"G. Fritz, C. Seifert, L. Paletta\",\"doi\":\"10.1109/ROBOT.2005.1570108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous mobile agents require object recognition for high level interpretation and localization in complex scenes. In urban environments, recognition of buildings might play a dominant role in robotic systems that need object based navigation, that take advantage of visual feedback and multimodal information for self-localization, or that enable association to related information from the identified semantics. We present a new method – the informative local features approach – based on an information theoretic saliency measure that is rapidly derived from a local Parzen window density estimation in feature subspace. From the learning of a decision tree based mapping to informative features, it enables attentive access to discriminative information and thereby significantly speeds up the recognition process. This approach is highly robust with respect to severe degrees of partial occlusion, noise, and tolerant to some changes in scale and illumination. We present performance evaluation on our publicly available reference object database (TSG-20) that demonstrates the efficiency of this approach, case wise even outperforming the SIFT feature approach [1]. Building recognition will be advantageous in various application domains, such as, mobile mapping, unmanned vehicle navigation, and systems for car driver assistance.\",\"PeriodicalId\":350878,\"journal\":{\"name\":\"Proceedings of the 2005 IEEE International Conference on Robotics and Automation\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.2005.1570108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2005.1570108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

在复杂的场景中,自主移动代理需要对象识别来进行高层次的解释和定位。在城市环境中,建筑物识别可能在机器人系统中发挥主导作用,这些系统需要基于对象的导航,利用视觉反馈和多模态信息进行自我定位,或者能够从识别的语义中关联相关信息。本文提出了一种基于信息论显著性度量的信息局部特征方法,该方法由特征子空间中的局部Parzen窗口密度估计快速导出。从基于映射的决策树的学习到信息特征,它可以专注地访问判别信息,从而显著加快识别过程。这种方法对于严重程度的局部遮挡、噪声以及尺度和光照的一些变化具有高度的鲁棒性。我们对公开可用的参考对象数据库(TSG-20)进行了性能评估,证明了该方法的效率,在案例方面甚至优于SIFT特征方法[1]。建筑识别将在移动地图、无人驾驶汽车导航和汽车驾驶员辅助系统等各种应用领域发挥优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Urban Object Recognition from Informative Local Features
Autonomous mobile agents require object recognition for high level interpretation and localization in complex scenes. In urban environments, recognition of buildings might play a dominant role in robotic systems that need object based navigation, that take advantage of visual feedback and multimodal information for self-localization, or that enable association to related information from the identified semantics. We present a new method – the informative local features approach – based on an information theoretic saliency measure that is rapidly derived from a local Parzen window density estimation in feature subspace. From the learning of a decision tree based mapping to informative features, it enables attentive access to discriminative information and thereby significantly speeds up the recognition process. This approach is highly robust with respect to severe degrees of partial occlusion, noise, and tolerant to some changes in scale and illumination. We present performance evaluation on our publicly available reference object database (TSG-20) that demonstrates the efficiency of this approach, case wise even outperforming the SIFT feature approach [1]. Building recognition will be advantageous in various application domains, such as, mobile mapping, unmanned vehicle navigation, and systems for car driver assistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信