{"title":"自然梯度DNN声学模型的序列训练","authors":"Adnan Haider, P. Woodland","doi":"10.1109/ASRU.2017.8268933","DOIUrl":null,"url":null,"abstract":"Deep Neural Network (DNN) acoustic models often use discriminative sequence training that optimises an objective function that better approximates the word error rate (WER) than frame-based training. Sequence training is normally implemented using Stochastic Gradient Descent (SGD) or Hessian Free (HF) training. This paper proposes an alternative batch style optimisation framework that employs a Natural Gradient (NG) approach to traverse through the parameter space. By correcting the gradient according to the local curvature of the KL-divergence, the NG optimisation process converges more quickly than HF. Furthermore, the proposed NG approach can be applied to any sequence discriminative training criterion. The efficacy of the NG method is shown using experiments on a Multi-Genre Broadcast (MGB) transcription task that demonstrates both the computational efficiency and the accuracy of the resulting DNN models.","PeriodicalId":290868,"journal":{"name":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"39 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Sequence training of DNN acoustic models with natural gradient\",\"authors\":\"Adnan Haider, P. Woodland\",\"doi\":\"10.1109/ASRU.2017.8268933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Neural Network (DNN) acoustic models often use discriminative sequence training that optimises an objective function that better approximates the word error rate (WER) than frame-based training. Sequence training is normally implemented using Stochastic Gradient Descent (SGD) or Hessian Free (HF) training. This paper proposes an alternative batch style optimisation framework that employs a Natural Gradient (NG) approach to traverse through the parameter space. By correcting the gradient according to the local curvature of the KL-divergence, the NG optimisation process converges more quickly than HF. Furthermore, the proposed NG approach can be applied to any sequence discriminative training criterion. The efficacy of the NG method is shown using experiments on a Multi-Genre Broadcast (MGB) transcription task that demonstrates both the computational efficiency and the accuracy of the resulting DNN models.\",\"PeriodicalId\":290868,\"journal\":{\"name\":\"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"volume\":\"39 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2017.8268933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2017.8268933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sequence training of DNN acoustic models with natural gradient
Deep Neural Network (DNN) acoustic models often use discriminative sequence training that optimises an objective function that better approximates the word error rate (WER) than frame-based training. Sequence training is normally implemented using Stochastic Gradient Descent (SGD) or Hessian Free (HF) training. This paper proposes an alternative batch style optimisation framework that employs a Natural Gradient (NG) approach to traverse through the parameter space. By correcting the gradient according to the local curvature of the KL-divergence, the NG optimisation process converges more quickly than HF. Furthermore, the proposed NG approach can be applied to any sequence discriminative training criterion. The efficacy of the NG method is shown using experiments on a Multi-Genre Broadcast (MGB) transcription task that demonstrates both the computational efficiency and the accuracy of the resulting DNN models.