基于犹豫信息的大规模共识模型

Rosa M. Rodríguez, L. Martínez, G. Tré
{"title":"基于犹豫信息的大规模共识模型","authors":"Rosa M. Rodríguez, L. Martínez, G. Tré","doi":"10.1142/9789813273238_0027","DOIUrl":null,"url":null,"abstract":"Nowadays due to the technological development, large-scale group decision making problems (LSGDM) are common and they often need to obtain accepted solutions for all experts involved in the problem. To do so, a consensus reaching process (CRP) is applied. A challenge in CRP for LSGDM is to overcome scalability problems. This paper presents a new consensus model to deal with LSGDM that is able to reduce the time cost of the CRP.","PeriodicalId":259425,"journal":{"name":"Data Science and Knowledge Engineering for Sensing Decision Support","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A consensus model for large scale using hesitant information\",\"authors\":\"Rosa M. Rodríguez, L. Martínez, G. Tré\",\"doi\":\"10.1142/9789813273238_0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays due to the technological development, large-scale group decision making problems (LSGDM) are common and they often need to obtain accepted solutions for all experts involved in the problem. To do so, a consensus reaching process (CRP) is applied. A challenge in CRP for LSGDM is to overcome scalability problems. This paper presents a new consensus model to deal with LSGDM that is able to reduce the time cost of the CRP.\",\"PeriodicalId\":259425,\"journal\":{\"name\":\"Data Science and Knowledge Engineering for Sensing Decision Support\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Science and Knowledge Engineering for Sensing Decision Support\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789813273238_0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science and Knowledge Engineering for Sensing Decision Support","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789813273238_0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着技术的发展,大规模群体决策问题(large group decision making problem, LSGDM)越来越普遍,这些问题往往需要得到所有参与问题的专家都能接受的解决方案。为此,采用了共识达成过程(CRP)。针对LSGDM的CRP的一个挑战是克服可伸缩性问题。本文提出了一种新的共识模型来处理LSGDM,该模型能够降低CRP的时间成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A consensus model for large scale using hesitant information
Nowadays due to the technological development, large-scale group decision making problems (LSGDM) are common and they often need to obtain accepted solutions for all experts involved in the problem. To do so, a consensus reaching process (CRP) is applied. A challenge in CRP for LSGDM is to overcome scalability problems. This paper presents a new consensus model to deal with LSGDM that is able to reduce the time cost of the CRP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信