基于对偶鉴别器的视频预测与异常检测算法

Sinuo Fan, Fan-jie Meng
{"title":"基于对偶鉴别器的视频预测与异常检测算法","authors":"Sinuo Fan, Fan-jie Meng","doi":"10.1109/ICCIA49625.2020.00031","DOIUrl":null,"url":null,"abstract":"In order to make full use of the useful information in the massive video data and provide early warning of abnormal events, we propose a video prediction and abnormal detection algorithm. The algorithm designed a generation adversarial network with a single generator and dual discriminator to predict the video, and then performs anomaly detection on the basis of the video prediction frame. For training the model, various loss functions such as perceptual loss and optical flow loss are added to constrain the network. Extensive experiments on three publicly available datasets validate the effectiveness of our method in terms of various evaluation criteria.","PeriodicalId":237536,"journal":{"name":"2020 5th International Conference on Computational Intelligence and Applications (ICCIA)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Video Prediction and Anomaly Detection Algorithm Based On Dual Discriminator\",\"authors\":\"Sinuo Fan, Fan-jie Meng\",\"doi\":\"10.1109/ICCIA49625.2020.00031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to make full use of the useful information in the massive video data and provide early warning of abnormal events, we propose a video prediction and abnormal detection algorithm. The algorithm designed a generation adversarial network with a single generator and dual discriminator to predict the video, and then performs anomaly detection on the basis of the video prediction frame. For training the model, various loss functions such as perceptual loss and optical flow loss are added to constrain the network. Extensive experiments on three publicly available datasets validate the effectiveness of our method in terms of various evaluation criteria.\",\"PeriodicalId\":237536,\"journal\":{\"name\":\"2020 5th International Conference on Computational Intelligence and Applications (ICCIA)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Computational Intelligence and Applications (ICCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIA49625.2020.00031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIA49625.2020.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了充分利用海量视频数据中的有用信息,对异常事件进行预警,提出了一种视频预测与异常检测算法。该算法设计了一个单生成器双鉴别器的生成对抗网络对视频进行预测,然后根据视频预测帧进行异常检测。为了训练模型,加入了各种损失函数,如感知损失和光流损失来约束网络。在三个公开可用的数据集上进行的大量实验验证了我们的方法在各种评估标准方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video Prediction and Anomaly Detection Algorithm Based On Dual Discriminator
In order to make full use of the useful information in the massive video data and provide early warning of abnormal events, we propose a video prediction and abnormal detection algorithm. The algorithm designed a generation adversarial network with a single generator and dual discriminator to predict the video, and then performs anomaly detection on the basis of the video prediction frame. For training the model, various loss functions such as perceptual loss and optical flow loss are added to constrain the network. Extensive experiments on three publicly available datasets validate the effectiveness of our method in terms of various evaluation criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信