面向视觉信息检索与标注的多特征对象描述

Qianni Zhang, E. Izquierdo
{"title":"面向视觉信息检索与标注的多特征对象描述","authors":"Qianni Zhang, E. Izquierdo","doi":"10.1109/WIAMIS.2008.45","DOIUrl":null,"url":null,"abstract":"This paper describes how a multi-feature merging approach can be applied in semantic-based visual information retrieval and annotation. The goal is to identify the key visual patterns of specific objects from either static images or video frames. It is shown how the performance of such visual-to-semantic matching schemes can be improved by describing these key visual patterns using particular combinations of multiple visual features. A multi-objective learning mechanism is designed to derive a suitable merging metric for different features. The core of this mechanism is a widely used optimisation method - the multi-objective optimisation strategies. Assessment of the proposed technique has been conducted to validate its performance with natural images and videos.","PeriodicalId":325635,"journal":{"name":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Describing Objects with Multiple Features for Visual Information Retrieval and Annotation\",\"authors\":\"Qianni Zhang, E. Izquierdo\",\"doi\":\"10.1109/WIAMIS.2008.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes how a multi-feature merging approach can be applied in semantic-based visual information retrieval and annotation. The goal is to identify the key visual patterns of specific objects from either static images or video frames. It is shown how the performance of such visual-to-semantic matching schemes can be improved by describing these key visual patterns using particular combinations of multiple visual features. A multi-objective learning mechanism is designed to derive a suitable merging metric for different features. The core of this mechanism is a widely used optimisation method - the multi-objective optimisation strategies. Assessment of the proposed technique has been conducted to validate its performance with natural images and videos.\",\"PeriodicalId\":325635,\"journal\":{\"name\":\"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIAMIS.2008.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2008.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种多特征合并方法在基于语义的视觉信息检索和标注中的应用。目标是从静态图像或视频帧中识别特定对象的关键视觉模式。它展示了如何通过使用多个视觉特征的特定组合来描述这些关键的视觉模式来改进这种视觉-语义匹配方案的性能。设计了一种多目标学习机制,为不同的特征导出合适的合并度量。该机制的核心是一种广泛使用的优化方法-多目标优化策略。对所提出的技术进行了评估,以验证其在自然图像和视频中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Describing Objects with Multiple Features for Visual Information Retrieval and Annotation
This paper describes how a multi-feature merging approach can be applied in semantic-based visual information retrieval and annotation. The goal is to identify the key visual patterns of specific objects from either static images or video frames. It is shown how the performance of such visual-to-semantic matching schemes can be improved by describing these key visual patterns using particular combinations of multiple visual features. A multi-objective learning mechanism is designed to derive a suitable merging metric for different features. The core of this mechanism is a widely used optimisation method - the multi-objective optimisation strategies. Assessment of the proposed technique has been conducted to validate its performance with natural images and videos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信