量子2-SAT的线性时间算法

N. D. Beaudrap, Sevag Gharibian
{"title":"量子2-SAT的线性时间算法","authors":"N. D. Beaudrap, Sevag Gharibian","doi":"10.4230/LIPIcs.CCC.2016.27","DOIUrl":null,"url":null,"abstract":"The Boolean constraint satisfaction problem 3-SAT is arguably the canonical NP-complete problem. In contrast, 2-SAT can not only be decided in polynomial time, but in fact in deterministic linear time. In 2006, Bravyi proposed a physically motivated generalization of k-SAT to the quantum setting, defining the problem \"quantum k-SAT\". He showed that quantum 2-SAT is also solvable in polynomial time on a classical computer, in particular in deterministic time O(n^4), assuming unit-cost arithmetic over a field extension of the rational numbers, where n is number of variables. In this paper, we present an algorithm for quantum 2-SAT which runs in linear time, i.e. deterministic time O(n+m) for n and m the number of variables and clauses, respectively. Our approach exploits the transfer matrix techniques of Laumann et al. [QIC, 2010] used in the study of phase transitions for random quantum 2-SAT, and bears similarities with both the linear time 2-SAT algorithms of Even, Itai, and Shamir (based on backtracking) [SICOMP, 1976] and Aspvall, Plass, and Tarjan (based on strongly connected components) [IPL, 1979].","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A Linear Time Algorithm for Quantum 2-SAT\",\"authors\":\"N. D. Beaudrap, Sevag Gharibian\",\"doi\":\"10.4230/LIPIcs.CCC.2016.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Boolean constraint satisfaction problem 3-SAT is arguably the canonical NP-complete problem. In contrast, 2-SAT can not only be decided in polynomial time, but in fact in deterministic linear time. In 2006, Bravyi proposed a physically motivated generalization of k-SAT to the quantum setting, defining the problem \\\"quantum k-SAT\\\". He showed that quantum 2-SAT is also solvable in polynomial time on a classical computer, in particular in deterministic time O(n^4), assuming unit-cost arithmetic over a field extension of the rational numbers, where n is number of variables. In this paper, we present an algorithm for quantum 2-SAT which runs in linear time, i.e. deterministic time O(n+m) for n and m the number of variables and clauses, respectively. Our approach exploits the transfer matrix techniques of Laumann et al. [QIC, 2010] used in the study of phase transitions for random quantum 2-SAT, and bears similarities with both the linear time 2-SAT algorithms of Even, Itai, and Shamir (based on backtracking) [SICOMP, 1976] and Aspvall, Plass, and Tarjan (based on strongly connected components) [IPL, 1979].\",\"PeriodicalId\":246506,\"journal\":{\"name\":\"Cybersecurity and Cyberforensics Conference\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity and Cyberforensics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CCC.2016.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2016.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

布尔约束满足问题3-SAT是典型的np完全问题。相比之下,2-SAT不仅可以在多项式时间内确定,而且实际上可以在确定性线性时间内确定。2006年,Bravyi提出了k-SAT的物理动机推广到量子设置,定义了“量子k-SAT”问题。他证明了量子2-SAT在经典计算机上也可以在多项式时间内解决,特别是在确定时间O(n^4)内,假设在有理数的域扩展上的单位成本算法,其中n是变量的数量。本文提出了一种求解量子2-SAT的算法,该算法在线性时间内运行,即当变量数为n,子句数为m时,确定性时间为O(n+m)。我们的方法利用了Laumann等人[QIC, 2010]用于研究随机量子2-SAT相变的转移矩阵技术,并且与Even, Itai和Shamir(基于回溯)[SICOMP, 1976]和Aspvall, Plass和Tarjan(基于强连接分量)[IPL, 1979]的线性时间2-SAT算法相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Linear Time Algorithm for Quantum 2-SAT
The Boolean constraint satisfaction problem 3-SAT is arguably the canonical NP-complete problem. In contrast, 2-SAT can not only be decided in polynomial time, but in fact in deterministic linear time. In 2006, Bravyi proposed a physically motivated generalization of k-SAT to the quantum setting, defining the problem "quantum k-SAT". He showed that quantum 2-SAT is also solvable in polynomial time on a classical computer, in particular in deterministic time O(n^4), assuming unit-cost arithmetic over a field extension of the rational numbers, where n is number of variables. In this paper, we present an algorithm for quantum 2-SAT which runs in linear time, i.e. deterministic time O(n+m) for n and m the number of variables and clauses, respectively. Our approach exploits the transfer matrix techniques of Laumann et al. [QIC, 2010] used in the study of phase transitions for random quantum 2-SAT, and bears similarities with both the linear time 2-SAT algorithms of Even, Itai, and Shamir (based on backtracking) [SICOMP, 1976] and Aspvall, Plass, and Tarjan (based on strongly connected components) [IPL, 1979].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信